Answer:
fundamental frequency of pipe will be equal to 74 Hz
Explanation:
We have given for a particular organ pipe two adjacent frequency are 296 Hz and 370 Hz
Speed of the sound in air is 343 m/sec
We have to find the fundamental frequency for the pipe
Fundamental frequency will be equal to difference of the two adjacent frequency
So fundamental frequency = 370 - 296 = 74 Hz
So fundamental frequency of pipe will be equal to 74 Hz
Answer:
a) y₂ = 49.1 m
, t = 1.02 s
, b) y = 49.1 m
, t= 1.02 s
Explanation:
a) We will solve this problem with the missile launch kinematic equations, to find the maximum height, at this point the vertical speed is zero
² =
² - 2 g (y –yo)
The origin of the coordinate system is on the floor and the ball is thrown from a height
y-yo =
=
- g t
t =
/ g
t = 10 / 9.8
t = 1.02 s
b) the maximum height
y- 44.0 =
² / 2 g
y - 44.0 = 5.1
y = 5.1 +44.0
y = 49.1 m
The time is the same because it does not depend on the initial height
t = 1.02 s
Find the electric flux and the disp at t=0.50ns
<span>Given: </span>
<span>Resistor R = 160 Ω </span>
<span>Voltage ε = 22.0 V </span>
<span>Capacitor C = 3.10 pF = 3.10 * 10^-12 F </span>
<span>time t = 0.5 ns = 0.5 * 10^-9 s </span>
<span>ε0 = 8.85 * 10^-12 </span>
<span>Solution: </span>
<span>ELECTRIC FLUX: </span>
<span>Φ = Q/ε0 </span>
<span>we have ε0, we need to find Q the charge </span>
<span>STEP 1: FIND Q </span>
<span>Q = C ε ( 1 - e^(-t/RC) ) </span>
<span>Q = { 3.10 * 10^-12 } { 22.0 } { 1 - e^(- 0.5 * 10^-9 / 160 *3.10 * 10^-12 ) } </span>
<span>Q = { 3.10 * 10^-12 } { 22.0 } { 1 - 0.365 } </span>
<span>Q = { 3.10 * 10^-12 } { 22.0 } { 0.635 } </span>
<span>Q = 43.31 * 10^-12 C </span>
<span>STEP 2: WE HAVE Q AND ε0 > >>> SOLVE FOR ELECTRIC FLUX >>> </span>
<span>Φ = Q/ε0 </span>
<span>Φ = { 43.31 * 10^-12 C } / { ε0 = 8.85 * 10^-12 } </span>
<span>Φ = 4.8937 = 4.9 V.m </span>
<span>DISPLACEMENT CURRENT </span>
<span>we use the following equation: </span>
<span>I = { ε / R } { e^(-t/RC) } </span>
<span>I = { 22 / 160 } { e^(- 0.5 * 10^-9 / 160 *3.10 * 10^-12 ) } </span>
<span>I = { 0.1375 } { 0.365 } </span>
<span>I = 0.0502 A = 0.05 A </span>
<span>I think they were also too skeptic to believe the continent did move or pull apart, even today do you believe that the
continents broke from one big flat plate, and that they pulled apart?
They also wonder what large force would be responsible for the movement.
It
was much later that evidences from plant and animal features that had
similarity from two different planets came up that scientists began
accepting the idea of continental drift.
And similar rock strata from two different opposite continents, showed similar rock strata.
All these evidences came up much later after Alfred Wengener.
So Alfred Wengener was honored Posthumously</span>
Answer:
sorry but which class your talking 'bout