1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irakobra [83]
4 years ago
11

You can use any coordinate system you like in order to solve a projectile motion problem. To demonstrate the truth of this state

ment, consider a ball thrown off the top of a building with a velocity vvec at an angle ? with respect to the horizontal. Let the building be 44.0 m tall, the initial horizontal velocity be 8.80 m/s, and the initial vertical velocity be 10.0 m/s. Choose your coordinates such that the positive y-axis is upward, and the positive x-axis is to the right, and the origin is at the point where the ball is released.
(a) With these choices, find the ball's maximum height above the ground, and the time it takes to reach the maximum height.
Maximum height above ground 1 m
Time to reach maximum height 2 s

(b) Repeat your calculations choosing the origin at the base of the building.
Maximum height above ground 3 m
Time to reach maximum height 4 s
Physics
1 answer:
posledela4 years ago
7 0

Answer:

a)  y₂ = 49.1 m ,    t = 1.02 s , b)   y = 49.1 m , t= 1.02 s

Explanation:

a) We will solve this problem with the missile launch kinematic equations, to find the maximum height, at this point the vertical speed is zero

            v_{y}² = v_{oy}² - 2 g (y –yo)

The origin of the coordinate system is on the floor and the ball is thrown from a height

           y-yo = v_{oy}² /2 g
            y- 0 = 10.0²/2 9.8
            y - 0 = 5.10 m
            
The height from the ground is the height that rises from the reference system plus the depth of the ground from the reference system
             y₂ = 5.1 + 44
             y₂ = 49.1 m
Let's use the other equation to find the time
              [tex]v_{y} = v_{oy} - g t

              t = v_{oy} / g

              t = 10 / 9.8

              t = 1.02 s

b) the maximum height

            y- 44.0 = v_{y}² / 2 g

            y - 44.0 = 5.1

            y = 5.1 +44.0

            y = 49.1 m

The time is the same because it does not depend on the initial height

              t = 1.02 s

You might be interested in
Help<br> How much current will flow when a 120 V power supply is connected to a 30<br> resistor ?
AVprozaik [17]
Current= voltage divided by resistance
120/30=4
7 0
3 years ago
A ball rolls horizontally off a table and a height of 1.4 m with a speed of 4 m/s. How long does it take the ball to reach the g
Hitman42 [59]

For vertical motion, use the following kinematics equation:

H(t) = X + Vt + 0.5At²

H(t) is the height of the ball at any point in time t for t ≥ 0s

X is the initial height

V is the initial vertical velocity

A is the constant vertical acceleration

Given values:

X = 1.4m

V = 0m/s (starting from free fall)

A = -9.81m/s² (downward acceleration due to gravity near the earth's surface)

Plug in these values to get H(t):

H(t) = 1.4 + 0t - 4.905t²

H(t) = 1.4 - 4.905t²

We want to calculate when the ball hits the ground, i.e. find a time t when H(t) = 0m, so let us substitute H(t) = 0 into the equation and solve for t:

1.4 - 4.905t² = 0

4.905t² = 1.4

t² = 0.2854

t = ±0.5342s

Reject t = -0.5342s because this doesn't make sense within the context of the problem (we only let t ≥ 0s for the ball's motion H(t))

t = 0.53s

8 0
4 years ago
Read 2 more answers
1. Bone has a Young’s modulus of about
Blababa [14]

#1

As we know that

Y = \frac{stress}{strain}

now plug in all data into this

1.8\times 10^{10} = \frac{1.68 \times 10^8}{strain}

strain = 9.33 \times 10^{-3}

now from the formula of strain

strain = \frac{\Delta L}{L}

9.33 \times 10^{-3} = \frac{\Delta L}{0.54}

\Delta L = 5.04 \times 10^{-3} m

\Delta L = 5.04 mm

#2

As we know that

pressure * area = Force

here we know that

Area = 3.53 \times 11.6 = 40.95 m^2

P = 0.2 atm = 0.2 \times 1.01 \times 10^5 = 2.02\times 10^4 Pa

now force is given as

F = 40.95 \times (2.02\times 10^4) = 8.27 \times 10^5 N

#3

As we know that density of water will vary with the height as given below

\rho = \frac{\rho_0}{1 - \frac{\Delta P}{B}}

here we know that

\Delta P = 2600 atm = 2600 \times 1.01 \times 10^5 = 2.63\times 10^8 Pa

B = 2.3 \times 10^9 N/m^2

now density is given as

\rho = \frac{1050}{1 - \frac{2.63\times 10^8}{2.3 \times 10^9}}

\rho = 1185.3 kg/m^3

#4

as we know that pressure changes with depth as per following equation

P = P_o + \rho g h

here we know that

P = 3 P_0

now we will have

3P_0 = P_0 + \rho g h

2P_0 = \rho g h

2(1.01 \times 10^5) = 1025 (9.81)(h)

here we will have

h = 20.1 m

so it is 20.1 m below the surface

#5

Here net buoyancy force due to water and oil will balance the weight of the block

so here we will have

mg = \rho_1V_1g + \rho_2V_2g

A(0.0476)979 = 922(A)(0.0476 - x) + 1000(A)(x)

46.6 = 43.89 - 922x + 1000x

x = 3.48 cm

so it is 3.48 cm below the interface

5 0
4 years ago
A. If you set a cannonball to 1500 m/s, what happens? Explain why you think it moves this way.
creativ13 [48]

Answer:

I beleive it would shoot very far up into the sky

Explanation:

7 0
4 years ago
Read 2 more answers
Magnitudes cuantitativas<br> ejemplos
Kipish [7]
Where is the Picture?
7 0
3 years ago
Other questions:
  • Which of the following is an example of newton second law of motion?
    5·1 answer
  • Using the diagram below, calculate the PE and KE of the ball at the top, middle, and bottom of a drop. SHOW YOUR WORK!!
    7·1 answer
  • Please help me answer this question
    15·1 answer
  • An object's acceleration is given by a(t)=a(t)=60t m/s260t m/s2 . if it begins at rest, how far has it gone after 10 seconds?
    8·1 answer
  • The law of conservation of energy applies:
    14·1 answer
  • Tammy jogged 350 meters at a velocity of 7 m/s. How long did it take her to jog this distance?
    13·2 answers
  • Does a rolling ball on a level floor have PE or KE? Explain.
    15·1 answer
  • An object with a mass of 2.0 kg accelerates 2.0 m/s 2when an unknown force is applied to it. What is the amount of force?
    8·1 answer
  • A physics student has a battery and three equal resistors. If she uses all of the
    8·2 answers
  • First right is brainliest, plz help:)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!