1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irakobra [83]
3 years ago
11

You can use any coordinate system you like in order to solve a projectile motion problem. To demonstrate the truth of this state

ment, consider a ball thrown off the top of a building with a velocity vvec at an angle ? with respect to the horizontal. Let the building be 44.0 m tall, the initial horizontal velocity be 8.80 m/s, and the initial vertical velocity be 10.0 m/s. Choose your coordinates such that the positive y-axis is upward, and the positive x-axis is to the right, and the origin is at the point where the ball is released.
(a) With these choices, find the ball's maximum height above the ground, and the time it takes to reach the maximum height.
Maximum height above ground 1 m
Time to reach maximum height 2 s

(b) Repeat your calculations choosing the origin at the base of the building.
Maximum height above ground 3 m
Time to reach maximum height 4 s
Physics
1 answer:
posledela3 years ago
7 0

Answer:

a)  y₂ = 49.1 m ,    t = 1.02 s , b)   y = 49.1 m , t= 1.02 s

Explanation:

a) We will solve this problem with the missile launch kinematic equations, to find the maximum height, at this point the vertical speed is zero

            v_{y}² = v_{oy}² - 2 g (y –yo)

The origin of the coordinate system is on the floor and the ball is thrown from a height

           y-yo = v_{oy}² /2 g
            y- 0 = 10.0²/2 9.8
            y - 0 = 5.10 m
            
The height from the ground is the height that rises from the reference system plus the depth of the ground from the reference system
             y₂ = 5.1 + 44
             y₂ = 49.1 m
Let's use the other equation to find the time
              [tex]v_{y} = v_{oy} - g t

              t = v_{oy} / g

              t = 10 / 9.8

              t = 1.02 s

b) the maximum height

            y- 44.0 = v_{y}² / 2 g

            y - 44.0 = 5.1

            y = 5.1 +44.0

            y = 49.1 m

The time is the same because it does not depend on the initial height

              t = 1.02 s

You might be interested in
A motorcycle begins at rest and accelerates uniformly S7.9 we want to find a time to take the motorcycle to reach a speed of 100
Len [333]

The motorbike reaches 100 km/h in 3.5 seconds

Explanation:

The motion of the motorbike is a uniformly accelerated motion (= constant acceleration), therefore we can use the following suvat equation:

v=u+at

where

v is the final velocity

u is the initial velocity

a is the acceleration

t is the time

For the motorbike in this problem,

u = 0 (it starts from rest)

v = 100 km/h = 27.8 m/s is the final velocity

a=7.9 m/s^2 is the acceleration

Solving for t, we find the time it takes for the bike to reach that velocity:

t=\frac{v-u}{a}=\frac{27.8-0}{7.9}=3.5 s

Learn more about accelerated motion:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

6 0
3 years ago
Show the equation of simple pendulum to be dimensionally consistent
nataly862011 [7]
T is in seconds (s) 

<span>2pi is dimensionless </span>

<span>L is in meters (m) </span>

<span>g is in meters per second squared (m/s^2) </span>

<span>so you can write the equation for the period of the simple pendulum in its units... </span>

<span>s=sqrt(m/(m/s^2)) </span>

<span>simplify</span>

<span>s=sqrt(m*s^2*1/m) cancelling the m's </span>

<span>s=sqrt(s^2) </span>

<span>s=s </span>

<span>therefore the dimensions on the left side of the equation are equal to the dimensions on the right side of the equation.</span>
6 0
3 years ago
You are watching a television show about Navy pilots. The narrator says that when a Navy jet takes off, it accelerates because t
zepelin [54]

You are watching a television show about Navy pilots. The narrator says that when a Navy jet takes off, the average force on the jet is due to the catapult is mathematically given as

What is the average force on the jet is due to the catapult?

Generally, the equation for acceleration is mathematically given as

a=\frac{vf^2-vi^2}{2s}\\\\\Therefore\\\\a=\frac{69.29^2-0^2}{2(90}\\\\a=26.673m/s^2

In conclusion, The force

F=m*a

F=15100*26.673

F=40272.3N

F 402 KN

Read more about force

brainly.com/question/13191643

#SPJ1

6 0
2 years ago
A stone is dropped into a river from a bridge 41.7 m above the water. Another stone is thrown vertically down 1.80 s after the f
hram777 [196]

Answer:

31.75 m/s

Explanation:

h = 41.7 m

Let the initial velocity of the second stone is u

Let the time taken to reach to the bottom by the first stone is t then the time taken by the second stone to reach the ground is t - 1.8.

For first stone:

Use second equation of motion

h=ut+\frac{1}{2}gt^2

Here, u = 0, g = 9.8 m/s^2 and t be the time and h = 41.7

So, 41.7= 0 + 0.5 x 9.8 x t^2

41.7 = 4.9 t^2

t = 2.92 s ..... (1)

For second stone:

Use second equation of motion

h=ut+\frac{1}{2}gt^2

Here, g = 9.8 m/s^2 and time taken is t - 1.8 = 2.92 - 1.8 = 1.12 s, h = 41.7 m and u be the initial velocity

h=u\left ( t-1.8 \right )+4.9\left ( t-1.8 \right )^2    .... (2)

By equation the equation (1) and (2), we get

41.7=1.12 u +4.9 \times 1.12^{2}

u = 31.75 m/s

5 0
3 years ago
what is the value of the constant for a second order reaction if the reactant concentration drops from .657 M to ,0981 M in 17 s
yaroslaw [1]

Answer : The value of the constant for a second order reaction is, 0.51M^{-1}s^{-1}

Explanation :

The expression used for second order kinetics is:

kt=\frac{1}{[A_t]}-\frac{1}{[A_o]}

where,

k = rate constant = ?

t = time = 17s

[A_t] = final concentration = 0.0981 M

[A_o] = initial concentration = 0.657 M

Now put all the given values in the above expression, we get:

k\times 17s=\frac{1}{0.0981M}-\frac{1}{0.657M}

k=0.51M^{-1}s^{-1}

Therefore, the value of the constant for a second order reaction is, 0.51M^{-1}s^{-1}

6 0
3 years ago
Other questions:
  • Compared to that of a plane on the ground, Earth’s gravitational pull on a plane 7 miles above Earth is approximately A) zero. B
    11·2 answers
  • Samuel adds a teaspoon of salt to a glass of water. He notices that the salt disappears. Samuel takes a dip to discover that the
    12·1 answer
  • Using a 1-kW heater for one hour consumes more energy than using a 100-W bulb for twenty-four hours. Please select the best answ
    15·1 answer
  • Even if it is wrong, why is a hypothesis important?
    11·1 answer
  • Earthquakes along the subduction zones near Sumatra and Chile are some of the strongest in
    15·1 answer
  • A fountain shoots a jetof water straight up. The nozzle is 1 cm in diameter and the speed of the water exiting the nozzle is 30
    15·1 answer
  • How many squares for three traits?
    5·1 answer
  • One of the purposes of an experiment is to determine whether the dependent variable affects the independent variable. Please sel
    11·2 answers
  • A force of 10 N making an angle 30 with horizontal .its horizontal component wll be​
    10·1 answer
  • 9) 25cm³ of a liquid x of density 1.2g/cm³ is mixed with liquid of volume 30 cm³ and 0.9g/cm³ without change in volume. Calculat
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!