B b b b b b b bb bb bb b b b b b b b b b
Answer:
Explanation:
F = ma
4.45g - 2.75g = (4.45 + 2.75)a
a = 9.81(4.45 - 2.75) / (4.45 + 2.75) = 2.31625 ≈ 2.32 m/s²
a)
T = 2.75(9.81 + 2.32) = 33.3 N
or
T = 4.45(9.81 - 2.32) = 33.3 N
b) 2.32 m/s² upward for 2.75 kg mass
2.32 m/s² downward for 4.45 kg mass
c) y = ½at² = ½(2.31625/3)1² = 1.158125 ≈ 1.16 m
1. The amount of energy carried by the wave is related to the Amplitude of the wave.
2. A mechanical wave requires an initial energy input, Once this initial energy is added the wave travels through the medium until all it's energy is transferred.
The current that would pass through the 30 ohms resistor is 2 A.
<h3>What is electric current?</h3>
Electric current is the rate of flow of electric charge round a conductor.
To calculate the electric current that would pass through the 30 ohms resistor, we use the formula below
Formula:
- I = V/Rt........... Equation 1
Where:
- I = Electric current passing through the 30 ohms resistor
- V = Voltage
- Rt = Total or effective resistance of the resistors.
From the question,
Given:
- V = 100 volts
- Rt = (30+20) ohms (since both resistors are connected in series)
Substitute these values into equation 1
Hence, The current that would pass through the 30 ohms resistor is 2 A.
Learn more about electric current here: brainly.com/question/1100341