Answer: 4.9 x 10^6 joules
Explanation:
Given that:
mass of boulder (m) = 2,500 kg
Height of ledge above canyon floor (h) = 200 m
Gravita-tional potential energy of the boulder (GPE) = ?
Since potential energy is the energy possessed by a body at rest, and it depends on the mass of the object (m), gravitational acceleration (g), and height (h).
GPE = mgh
GPE = 2500kg x 9.8m/s2 x 200m
GPE = 4900000J
Place result in standard form
GPE = 4.9 x 10^6J
Thus, the gravita-tional potential energy of the boulder-Earth system relative to the canyon floor is 4.9 x 10^6 joules
Answer:
a. speed, v = 0.97 c
b. time, t' = 20.56 years
Given:
t' = 5 years
distance of the planet from the earth, d = 10 light years = 10 c
Solution:
(a) Distance travelled in a round trip, d' = 2d = 20 c = L'
Now, using Length contraction formula of relativity theory:
(1)
time taken = 5 years
We know that :
time = 
5 =
(2)
Dividing eqn (1) by v on both the sides and substituting eqn (2) in eqn (1):
Squaring both the sides and Solving above eqution, we get:
v = 0.97 c
(b) Time observed from Earth:
Using time dilation:


Solving the above eqn:
t'' = 20.56 years
Answer:
Well, each ml of water requires one calorie to go up 1 degree Celsius, so this liter of water takes 1000 calories to go up 1 degree Celsius.
Explanation:
Answer:
b. a large elliptical galaxy
Explanation:
In elliptical galaxies the stars are grouped in an elliptical shape, it has a low quantity of gas and dust in comparison to spiral galaxies, and its stars belong to an old population, there is not new stellar formation in it.
The stars orbit in a messy way which made to believe that they form from the merger of galaxies.
They are also really massive (around
solar masses).
The most massive and luminous can be found in the center of cluster of galaxies.