The ideal gas constant is a proportionality constant that is added to the ideal gas law to account for pressure (P), volume (V), moles of gas (n), and temperature (T) (R). R, the global gas constant, is 8.314 J/K-1 mol-1.
According to the Ideal Gas Law, a gas's pressure, volume, and temperature may all be compared based on its density or mole value.
The Ideal Gas Law has two fundamental formulas.
PV = nRT, PM = dRT.
P = Atmospheric Pressure
V = Liters of Volume
n = Present Gas Mole Number
R = 0.0821atmLmoL K, the Ideal Gas Law Constant.
T = Kelvin-degree temperature
M stands for Molar Mass of the Gas in grams Mol d for Gas Density in gL.
Learn more about Ideal gas law here-
brainly.com/question/28257995
#SPJ4
Answer:
14.85 m/s
Explanation:
From the question given above, the following data were obtained:
Height (h) of tower = 45 m
Horizontal distance (s) moved by the balloon = 45 m
Horizontal velocity (u) =?
Next, we shall determine the time taken for the balloon to hit the shoe of the passerby. This is illustrated below:
Height (h) of tower = 45 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
45 = ½ × 9.8 × t²
45 = 4.8 × t²
Divide both side by 4.9
t² = 45/4.9
Take the square root of both side
t = √(45/4.9)
t = 3.03 s
Finally, we shall determine the magnitude of the horizontal velocity of the balloon as shown below:
Horizontal distance (s) moved by the balloon = 45 m
Time (t) = 3.03 s
Horizontal velocity (u) =?
s = ut
45 = u × 3.03
Divide both side by 3.03
u = 45/3.03
u = 14.85 m/s
Thus, the magnitude of the horizontal velocity of the balloon was 14.85 m/s
Answer:
(a) 
(b) 5220 j
(c) 1740 watt
(d) 3446.66 watt
Explanation:
We have given mass m = 290 kg
Initial velocity u = 0 m/sec
Final velocity v = 6 m/sec
Time t = 3 sec
From first equation of motion
v = u+at
So 
(a) We know that force is given by
F = ma
So force will be 
(b) From second equation of motion we know that

We know that work done is given by
W = F s = 580×9 =5220 j
(c) Time is given as t = 3 sec
We know that power is given as

(d) Time t = 1.5 sec
So 
Answer:F=4F
Explanation: Columbs law states that The force between the two point charges is directly proportional to the product of charges and inversely proportional to the square of distance between them
Force between the two charges is given by
F=K*q1*q2/r^2
if one charge become 4 times, new force is,
F=4(K*q1*q2)/r^2
F=4F
Where q1 and q2 are the point charges
r is the distance between the two charges
K is a constant of proportion called electrostatic force
The Newton’s law Nikolas would use to come up with this idea is the <span>Third law that states:
</span><span>When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.
</span>
So, in this case, let's name the first Body
A which is the skateboard and the second body
B which is <span>the compressed carbon dioxide in a fire extinguisher. Then, as shown in the figure below, according to the Third law:
</span>

<span>
</span>