The formula we can use in this case is:
d = v0t + 0.5 at^2
v = at + v0
where,
d = distance travelled
v0 = initial velocity = 0 since at rest
t = time travelled
a = acceleration
v = final velocity when it took off
a. d = 0 + 0.5 * 3 * 30^2
d = 1350 m
b. v = 3 * 30 + 0
<span>v = 90 m/s</span>
Power=Work/Time
The work done is the energy required to lift the box, fighting the force of gravity. So, Work=Potential energy of the box at 10 meters.
W=PE=mgh=(60)(9.8)(10)=5880J
Finally,
P=W/T=(5880)/(5)=1176Watt
So the answer is 1176 Watts
Answer:
The angular velocity is
5.64rad/s
Explanation:
This problem bothers on curvilinear motion
The angular velocity is defined as the rate of change of angular displacement it is expressed in rad/s
We know that the velocity v is given as
v= ωr
Where ω is the angular velocity
r is 300mm to meter = 0.3m
the radius of the circle
described by the level
v=1.64m/s
Making ω subject of the formula and solving we have
ω=v/r
ω=1.64/0.3
ω=5.46 rad/s