If the object is moving in a straight line at a constant speed, then that's
the definition of zero acceleration. It can only happen when the sum of
all forces (the 'net' force) on the object is zero.
And it doesn't matter what the object's mass is. That argument is true
for specks of dust, battleships, rocks, stars, rock-stars, planets, and
everything in between.
Calculate the change in heat of the aluminum; show all calculations. Calculate the change in heat of the water; show all calculations. Are the two values the same? Why or why not? See the attached picture for the numbers.
I got -3443.14 J for the aluminum and 3443.595 for the water
Answer:
Fd
Explanation:
Work is force times distance. If you push on an object really hard but it does not budge, you have still performed no work on it, because anything times zero is still zero.
Answer:
Yes
Explanation:
There are two types of interference possible when two waves meet at the same point:
- Constructive interference: this occurs when the two waves meet in phase, i.e. the crest (or the compression, in case of a longitudinale wave) meets with the crest (compression) of the other wave. In such a case, the amplitude of the resultant wave is twice that of the original wave.
- Destructive interferece: this occurs when the two waves meet in anti-phase, i.e. the crest (or the compression, in case of a longitudinal wave) meets with the trough (rarefaction) of the other wave. In this case, the amplitude of the resultant wave is zero, since the amplitudes of the two waves cancel out.
In this problem, we have a situation where the compression of one wave meets with the compression of the second wave, so we have constructive interference.
Answer:B.
Both increase as the mass and velocity increase.