1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valina [46]
1 year ago
8

When you rub neutral objects​

Physics
1 answer:
FrozenT [24]1 year ago
4 0

electrons can be knocked loose from one object and picked up by the other. The object that gains electrons becomes negatively charged, while the object that loses electrons becomes positively charged.

b gained electrons

You might be interested in
A projectile is launched at an angle of 30 and lands 20 s later at the same height as it was launched. (a) What is the initial s
Pavlova-9 [17]

Answer:

(a) 196 m/s

(b) 490 m

(c) 3394.82 m

(d) 2572.5 m

Explanation:

First of all, let us know one thing. When an object is thrown in the air, it experiences two forces acting in two different directions, one in the horizontal direction called air resistance and the second in the vertically downward direction due to its weight. In most of the cases, while solving numerical problems, air resistance is neglected unless stated in the numerical problem. This means we can assume zero acceleration along the horizontal direction.

Now, while solving our numerical problem, we will discuss motion along two axes according to our convenience in the course of solving this problem.

<u>Given:</u>

  • Time of flight = t = 20 s
  • Angle of the initial velocity of projectile with the horizontal = \theta = 30^\circ

<u>Assume:</u>

  • Initial velocity of the projectile = u
  • R = Range of the projectile during the time of flight
  • H = maximum height of the projectile
  • D = displacement of the projectile from the initial position at t = 15 s

Let us assume that the position from where the projectile was projected lies at origin.

  • Initial horizontal velocity of the projectile = u\cos \theta
  • Initial horizontal velocity of the projectile = u\sin \theta

Part (a):

During the time of flight the displacement of the projectile along the vertical is zero as it comes to the same vertical height from where it was projected.

\therefore u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow u\sin \theta t=\dfrac{1}{2}(g)t^2\\\Rightarrow u=\dfrac{gt^2}{2\sin \theta t}\\\Rightarrow u=\dfrac{9.8\times 20^2}{2\sin 30^\circ \times 20}\\\Rightarrow u=196\ m/s

Hence, the initial speed  of the projectile is 196 m/s.

Part (b):

For a projectile, the time take by it to reach its maximum height is equal to return from the maximum height to its initial height is the same.

So, time taken to reach its maximum height will be equal to 10 s.

And during the upward motion of this time interval, the distance travel along the vertical will give us maximum height.

\therefore H = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow H = 196\times \sin 30^\circ \times 10 + \dfrac{1}{2}\times(-9.8)\times 10^2\\ \Rightarrow H =490\ m

Hence, the maximum altitude is 490 m.

Part (c):

Range is the horizontal displacement of the projectile from the initial position. As acceleration is zero along the horizontal, the projectile is in uniform motion along the horizontal direction.

So, the range is given by:

R = u\cos \theta t\\\Rightarrow R = 196\times \cos 30^\circ \times 20\\\Rightarrow R =3394.82\ m

Hence, the range of the projectile is 3394.82 m.

Part (d):

In order to calculate the displacement of the projectile from its initial position, we first will have to find out the height of the projectile and its range during 15 s.

\therefore h = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow h = 196\times \sin 30^\circ \times 15 + \dfrac{1}{2}\times(-9.8)\times 15^2\\ \Rightarrow h =367.5\ m\\r = u\cos \theta t\\\Rightarrow r = 196\times \cos 30^\circ \times 15\\\Rightarrow r =2546.11\ m\\\therefore D = \sqrt{r^2+h^2}\\\Rightarrow D = \sqrt{2546.11^2+367.5^2}\\\Rightarrow D =2572.5\ m

Hence, the displacement from the point of launch to the position on its trajectory at 15 s is 2572.5 m.

6 0
2 years ago
Protons and neutrons grouped in a specific pattern
alexgriva [62]
Answer b protons and electrons
5 0
3 years ago
If 1 meter = 3.28 feet, what is the height of the Washington Monument in meters?
jasenka [17]
Since you didn't provide how tall the Monument was, I took the liberty to find it and it is 555 feet tall. So to convert to meters we must divide 555 by 3.28 or multiply it by 0.3048 (this is the method I used).
555 x 0.3048 = 169.164 meters
5 0
3 years ago
Read 2 more answers
If a cart of 2 kg mass has a force of 8 newtons exerted on it, what is its acceleration?
maria [59]
This is an example of the Newton`s Second Law:
F = m * a
a = F / m
F = 8 N, m = 2 kg.
a = 8 N : 2 kg
Answer:
a = 4 m/s²
3 0
2 years ago
A wire connected to red and green terminals on a grey box, which contains a white box with a needle pointing up. The wire passes
harkovskaia [24]

Answer:

A Magnet

Explanation:

Edge 2021

3 0
3 years ago
Read 2 more answers
Other questions:
  • Snowboarder Jump—Energy and Momentum
    9·1 answer
  • Calculate the final temperature of a mixture of 0.350 kg of ice initially at 218°C and 237 g of water initially at 100.0°C.
    6·1 answer
  • Sb-28 a collision could occur when the distance decreases and bearing between two vessels does what?
    12·1 answer
  • When a 4.60-kg object is hung vertically on a certain light spring that obeys Hooke's law, the spring stretches 2.30 cm. (a) If
    9·1 answer
  • Which jet stream affects weather in the United States?
    5·1 answer
  • How does the eye and brain work together to give you perception of color
    14·1 answer
  • When was hawaii volcanoes national park established
    14·1 answer
  • Mass is a fundamental quantity ​
    9·1 answer
  • Do metal atoms tend to gain or lose electrons?
    9·2 answers
  • Which of the following statements does NOT describe force?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!