A.Momentum Equation
m = mass = 75 kg
v = velocity = 18 m/s
P = momentum
Using the momentum equation , momentum is given as
P = mv
P = 75 x 18
P = 1350 kgm/s
<span>Most low-level radioactive waste (LLW) is typically sent to land-based disposal immediately following its packaging for long-term management. This means that for the majority (~90% by volume) of all of the waste types produced by nuclear technologies, a satisfactory disposal means has been developed and is being implemented around the world.
</span>
Radioactive wastes are stored so as to avoid any chance of radiation exposure to people, or any pollution.The radioactivity of the wastes decays with time, providing a strong incentive to store high-level waste for about 50 years before disposal.Disposal of low-level waste is straightforward and can be undertaken safely almost anywhere.Storage of used fuel is normally under water for at least five years and then often in dry storage.<span>Deep geological disposal is widely agreed to be the best solution for final disposal of the most radioactive waste produced.
</span>I suggest this site on this subject http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-wastes/storage-and-dispo...
Answer:
40 Hz
Explanation:
f = 1/T = 1 / 0.025 = 40 Hz
Answer:
a = 0.45 m/s²
Explanation:
The given question is ''Calculate the acceleration that produces a force of 40 N on a body with 88 kg of mass".
Given that,
Force, F = 40 N
Mass of the body, m = 88 kg
The net force acting on the body is given by :
F = ma
Where
a is the acceleration of the body

So, the required acceleration is 0.45 m/s².
The speed and distances are directly proportional. Use ratios to solve for vertical y-distance. The ratio of x-distance west to y-distance north equals the x-velocity to y-velocity.
x/y = vx/vy
41/y = 8.6/5.2
41/y = 1.65
41/1.65 = y
24.8 m = y