1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa [96]
3 years ago
8

A projectile is launched at an angle of 30 and lands 20 s later at the same height as it was launched. (a) What is the initial s

peed of the projectile? (b) What is the maximum altitude? (c) What is the range? (d) Calculate the displacement from the point of launch to the position on its trajectory at 15 s.
Physics
1 answer:
Pavlova-9 [17]3 years ago
6 0

Answer:

(a) 196 m/s

(b) 490 m

(c) 3394.82 m

(d) 2572.5 m

Explanation:

First of all, let us know one thing. When an object is thrown in the air, it experiences two forces acting in two different directions, one in the horizontal direction called air resistance and the second in the vertically downward direction due to its weight. In most of the cases, while solving numerical problems, air resistance is neglected unless stated in the numerical problem. This means we can assume zero acceleration along the horizontal direction.

Now, while solving our numerical problem, we will discuss motion along two axes according to our convenience in the course of solving this problem.

<u>Given:</u>

  • Time of flight = t = 20 s
  • Angle of the initial velocity of projectile with the horizontal = \theta = 30^\circ

<u>Assume:</u>

  • Initial velocity of the projectile = u
  • R = Range of the projectile during the time of flight
  • H = maximum height of the projectile
  • D = displacement of the projectile from the initial position at t = 15 s

Let us assume that the position from where the projectile was projected lies at origin.

  • Initial horizontal velocity of the projectile = u\cos \theta
  • Initial horizontal velocity of the projectile = u\sin \theta

Part (a):

During the time of flight the displacement of the projectile along the vertical is zero as it comes to the same vertical height from where it was projected.

\therefore u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow u\sin \theta t=\dfrac{1}{2}(g)t^2\\\Rightarrow u=\dfrac{gt^2}{2\sin \theta t}\\\Rightarrow u=\dfrac{9.8\times 20^2}{2\sin 30^\circ \times 20}\\\Rightarrow u=196\ m/s

Hence, the initial speed  of the projectile is 196 m/s.

Part (b):

For a projectile, the time take by it to reach its maximum height is equal to return from the maximum height to its initial height is the same.

So, time taken to reach its maximum height will be equal to 10 s.

And during the upward motion of this time interval, the distance travel along the vertical will give us maximum height.

\therefore H = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow H = 196\times \sin 30^\circ \times 10 + \dfrac{1}{2}\times(-9.8)\times 10^2\\ \Rightarrow H =490\ m

Hence, the maximum altitude is 490 m.

Part (c):

Range is the horizontal displacement of the projectile from the initial position. As acceleration is zero along the horizontal, the projectile is in uniform motion along the horizontal direction.

So, the range is given by:

R = u\cos \theta t\\\Rightarrow R = 196\times \cos 30^\circ \times 20\\\Rightarrow R =3394.82\ m

Hence, the range of the projectile is 3394.82 m.

Part (d):

In order to calculate the displacement of the projectile from its initial position, we first will have to find out the height of the projectile and its range during 15 s.

\therefore h = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow h = 196\times \sin 30^\circ \times 15 + \dfrac{1}{2}\times(-9.8)\times 15^2\\ \Rightarrow h =367.5\ m\\r = u\cos \theta t\\\Rightarrow r = 196\times \cos 30^\circ \times 15\\\Rightarrow r =2546.11\ m\\\therefore D = \sqrt{r^2+h^2}\\\Rightarrow D = \sqrt{2546.11^2+367.5^2}\\\Rightarrow D =2572.5\ m

Hence, the displacement from the point of launch to the position on its trajectory at 15 s is 2572.5 m.

You might be interested in
Discuss how friction is reduced in oce skating
belka [17]

Answer:

below

Explanation:

Ice melts, meaning it has a watery layer upon its surface. This allows things to be moving like they are on a liquid but it has the solidity of a solid. The thin metal of the ice skates also decrease the surface area meaning it exerts more force but in turn, it allows you to move faster and further reduces friction.

7 0
2 years ago
How does uncertainty relate to measurements and calculations made during an investigation?
Rom4ik [11]

there here is your answer to your question

Uncertainty in measurements and calculations means difference between actual and measured data. We can say that all measurements have some degree of uncertainty. ... Systematic error (because of error in measuring instrument) 2. Random error (human errors such as- delay in starting, delay in stopping).

3 0
3 years ago
How can you tell one element from another?
3241004551 [841]
Their atomic number?? (easy guess)
6 0
3 years ago
Write a hypothesis for Part II of the lab, which is about the relationship described by F = ma. In the lab, you will use a toy c
hoa [83]

Answer:

F=ma is the relationship where, F is force, m is mass and a is acceleration.

Newton's second law states that  the unbalanced force applied to the object accelerates the object which is directly proportional to the force and inversely to the mass.

If we apply force to a toy car then It will accelerate.

This is how Newton's second law of motion is verified.

5 0
3 years ago
Read 2 more answers
Although these quantities vary from one type of cell to another, a cell can be 1.9 μm in diameter with a cell wall 60 nm thick.
DaniilM [7]

Answer: 2(10)^{-9} mg

Explanation:

We know the total diameter of the cell (assumed spherical) is:

d=1.9\mu m=1.9(10)^{-6} m

Then its total radius r=\frac{d}{2}=\frac{1.9(10)^{-6} m}{2}=9.5(10)^{-7} m

On the other hand, we know the thickness of the cell wall is r_{t}=60 nm= 60(10)^{-9} m and its density is the same as water (\rho=997 kg/m^{3}).

Since density is the relation between the mass m and the volume V:

\rho=\frac{m}{V}

The mass is: m=\rho V (1)

Now if we are talking about this cell as a thin spherical shell, its volume will be:

V=\frac{4}{3}\pi R^{3} (2)

Where  R=r-r_{w}=9.5(10)^{-7} m - 60(10)^{-9} m

Then:

V=\frac{4}{3}\pi (9.5(10)^{-7} m - 60(10)^{-9} m)^{3} (3)

V=2.952(10)^{-18} m^{3} (4)

Substituting (4) in (1):

m=(997 kg/m^{3})(2.952(10)^{-18} m^{3}) (5)

m=2.94(10)^{-15} kg (6)

Knowing 1 kg=1000 g and 1 mg=0.001 g:

m=2.94(10)^{-15} kg=2(10)^{-9} mg

7 0
4 years ago
Other questions:
  • How can you predict the action of the element
    8·1 answer
  • Which type of rock commonly contains fossils? A. sedimentary B. igneous C. metamorphic D. plutonic
    12·1 answer
  • What is the speed of gravity
    15·1 answer
  • A physician has a patient that he believes has had foul play. What type of autopsy would the physician request?
    9·1 answer
  • What caused the blackout in Canada?
    13·1 answer
  • Mike says, I gave up guitar because I’ll never be good at it, some people seem to have a good ear music, not me. Which mindset i
    13·1 answer
  • Why is the physics of hssc2 so difficult?
    12·2 answers
  • Car 1 drives 35 mph to the east, and car 2 drives 50 mph to the west. From the frame of reference of car 1, what is the velocity
    7·2 answers
  • Transfer of thermal or heat energy through "touch"
    10·1 answer
  • Một khối lập phương bằng nhôm cạnh 20cm nổi trên thuỷ ngân. Hỏi khối nhôm sẽ chìm xuống bao nhiêu khi nhiệt độ tăng từ 270K đến
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!