Answer: An atom can be considered unstable in one of two ways. If it picks up or loses an electron, it becomes electrically charged and highly reactive. Such electrically charged atoms are known as ions. Instability can also occur in the nucleus when the number of protons and neutrons is unbalanced.
Explanation:
Answer:
Yes
Explanation:
A gene pool is the sum total of all the genes(sum of alleles)of a species and population at any given time is known as gene pool.
The new species are created in nature by four mechanisms such as geographic isolation (allopatric speciation), reproductive isolation (sympatric speciation), mating behaviour (parapatric speciation).
Due to any of these factors when population acquire unique changes in their genes and enough changes have been introduced in the gene pool of the population with time, two population become distinct from each other and not able to interbreed leads to the formation of new species.
Answer: -
IE 1 for X = 801
Here X is told to be in the third period.
So n = 3 for X.
For 1st ionization energy the expression is
IE1 = 13.6 x Z ^2 / n^2
Where Z =atomic number.
Thus Z =( n^2 x IE 1 / 13.6)^(1/2)
Z = ( 3^2 x 801 / 13.6 )^ (1/2)
= 23
Number of electrons = Z = 23
Nearest noble gas = Argon
Argon atomic number = 18
Number of extra electrons = 23 – 18 = 5
a) Electronic Configuration= [Ar] 3d34s2
We know that more the value of atomic radii, lower the force of attraction on the electrons by the nucleus and thus lower the first ionization energy.
So more the first ionization energy, less is the atomic radius.
X has more IE1 than Y.
b) So the atomic radius of X is lesser than that of Y.
c) After the first ionization, the atom is no longer electrically neutral. There is an extra proton in the atom.
Due to this the remaining electrons are more strongly pulled inside than before ionization. Hence after ionization, the radii of Y decreases.
The activation energy Ea can be related to rate constant (k) at temperature (T) through the equation:
ln(k2/k1) = Ea/R[1/T1 - 1/T2]
where :
k1 is the rate constant at temperature T1
k2 is the rate constant at temperature T2
R = gas constant = 8.314 J/K-mol
Given data:
k1 = 0.543 s-1; T1 = 25 C = 25+273 = 298 K
k2 = 6.47 s-1; T = 47 C = 47+273 = 320 K
ln(6.47/0.543) = Ea/8.314 [1/298 - 1/320]
2.478 = 2.774 *10^-5 Ea
Ea = 0.8934*10^5 J = 89.3 kJ