Answer:
pKa of the acid HA with given equilibrium concentrations is 6.8
Explanation:
The dissolution reaction is:
HA ⇔ H⁺ + A⁻
So at equilibrium, Ka is calculated as below
Ka = [H⁺] x [A⁻] / [HA] = 2.00 x 10⁻⁴ x 2.00 x 10⁻⁴ / 0.260
= 15.38 x 10⁻⁸
Hence, by definition,
pKa = -log(Ka) = - log(15.38 x 10⁻⁸) = 6.813
Hey!!
here is your answer >>>
In order to find out which metal gains heat faster, we will have to find out their specific heat!. Specific heat is the heat required to raise the temperature of the unit substance, The specific heat of gold and brass are 0.126 for gold and 0.380 for brass!. The specific heat of gold is less than brass!. So, gold will gain heat faster!.
Hope my answer helps!
The answer is “Only some of the molecules of a weak base dissociate to produce hydroxide ions when mixed with water, but all of the molecules of a strong base dissociate to produce hydroxide ions”
Density does not change with the amount of matter.
The density of water is 1 g/mL whether you have 1 mL or 1000 mL of water. Density is an i<em>ntensive </em>property.
Mass, volume, and weight change with the quantity of matter. For example, the mass of 1000 mL of water is greater than the mass of 1 mL of water. Mass, volume, and weight are <em>extensiv</em>e properties.