Explanation:
Since, it is given that critical temperature of Argon is 150.9 K and critical pressure of Argon is 48.0 atm.
It is known that gas phase of neon occurs at 50 K. As the boiling point of Ar is more than the boiling point of neon which means that there is strong intermolecular force of attraction between argon molecules as compared to neon molecules.
This is also because argon is larger in size. As a result, induced dipole-induced dipole forces leads to more strength in Ar as compared to Ne.
Answer: 4.96 moles
Explanation:
C5H12 is the chemical formula for pentane, the fifth member of the alkane family.
Given that,
number of moles of C5H12 = ?
Mass in grams = 357.4 g
Molar mass of C5H12 = ?
To get the molar mass of C5H12, use the atomic mass of carbon = 12g; and Hydrogen = 1g
i.e C5H12 = (12 x 5) + (1 x 12)
= 60g + 12g
= 72g/mol
Now, apply the formula
Number of moles = Mass / molar mass
Number of moles = 357.4g / 72g/mol
= 4.96 moles
Thus, 4.96 moles of C5H12 that are contained in 357.4 g of the compound.
Answer:
we know that gas molecules move fast by hitting the container and they never meet,so if we have one single gas molecule then it will move slower . This is because it is alone in an empty container so until it hits the container to change it's movements it will make the process slower.
Read the explanation below to have a better idea based on the kinetic molecular theory.
Explanation:
Hello in this question we have a container and in it is a single gas molecule. So there is our gas molecule and in fact right there that violates the kinetic molecular theory. Because the kinetic molecular theory thinks of these particles as being dimension less points. Because there is so much space between particles. The particles themselves have such an insignificant volume as they can be thought of as dimension lys points. Okay. But anyway this particle is in rapid motion and this motion is essentially random. So it's moving and it will eventually hit the wall of its container. It's moving rapidly so it's going to hit it pretty quickly and when it hits the wall of that container Yeah, it is going to bounce off when it does that. It's a totally elastic collision. So that means there will be no energy transfer, no energy loss, no energy gained. It will just serve to change the direction of the particle. So when it hits the wall it's going to bounce back off the wall and continue in a straight line until it hits another wall and then it will bounce off that wall and it will continue moving in this motion in this motion its speed is related to the amount of energy it has and therefore its temperature. So if we add heat, it will move faster. If we remove heat or cool it down, it will move slower. So when we remove heat, it will move slower. The kinetic molecular theory says it will be constantly moving As long as it is above absolute zero. It's only at absolute zero or 0 Kelvin, where would stop moving. Okay, so all these things describe its motion. It's in rapid random motion in a straight line until it hits the wall of its container. Then it will rebound without a transfer of any energy. It will be totally elastic collision. If we were to heat it up, it would move faster. If we were to cool it down, it would move more slowly, we would have to cool it all the way down to absolute zero before it would stop moving. Right, so all of these things describe its motion. In terms of that kinetic molecular theory,
Answer:
A.The concentration of water is greater outside the cell than inside the cell.
Explanation:
The contractile vacuole of certain organisms functions to regulate water flow in and out of the cell. It does this by storing excess water that comes into the cell. In the case of this organism with a filled up contractile vacuole, it means water is flowing into the cell.
Naturally, water will flow into a living cell when an osmotic gradient i.e. difference in concemtration, has been created between intracellular and extracellular solutions. Osmosis involves movement of substances from a region of high water concentration to a region of low water concentration. This means that if water is flowing into the cell, which is stored by the contractile vacuole, the concentration of water must be greater outside the cell than inside.