Ionization energy (IE) is the amount of energy required to remove an electron.
If you observe the IEs sequentially, there is a large gap between the 2nd and 3rd. This suggests it is difficult to remove more than 2 two electrons. Elements that lose two electrons to become more stable are found in the Group 2A (2 representing the number of electrons in the outermost valence shell).
Answer:
A
Explanation:
lies to the left of periodic table
Answer:
3.3167 moles Of AlCl3
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
3Ca + 2AlCl3 —> 3CaCl2 + 2Al
From the balanced equation above,
2 moles of AlCl3 reacted to produce 2 moles of Al.
Finally, we shall obtained the number of moles of AlCl3 that reacted to produce 3.3167 moles of Al as follow:
From the balanced equation above,
2 moles of AlCl3 reacted to produce 2 moles of Al.
Therefore, 3.3167 moles Of AlCl3 will also react to produce 3.3167 moles of Al.
Thus, 3.3167 moles Of AlCl3 is needed for the reaction.
Answer:
%age Yield = 51.45 %
Solution:
Step 1: Convert Kg into g
68.5 Kg CO = 68500 g CO
8.60 Kg H₂ = 8600 g
Step 2: Find out Limiting reactant;
The Balance Chemical Equation is as follow;
CO + 2 H₂ → CH₃OH
According to Equation,
28 g (1 mol) CO reacts with = 4 g (2 mol) of H₂
So,
68500 g CO will react with = X g of H₂
Solving for X,
X = (68500 g × 4 g) ÷ 28 g
X = 9785 g of H₂
It shows 9785 g H₂ is required to react with 68500 g of CO but we are provided with 8600 g of H₂ which is less than required. Therefore, H₂ is provided in less amount hence, it is a Limiting reagent and will control the yield of products.
Step 3: Calculate Theoretical Yield
According to equation,
4 g (2 mol) H₂ reacts to produce = 32 g (1 mol) Methanol
So,
8600 g H₂ will produce = X g of CH₃OH
Solving for X,
X = (8600 g × 32 g) ÷ 4 g
X = 68800 g of CH₃OH
Step 4: Calculate %age Yield
%age Yield = Actual Yield ÷ Theoretical Yield × 100
Putting Values,
%age Yield = 3.54 × 10⁴ g ÷ 68800 g × 100
%age Yield = 51.45 %
My calculations say it'll take 600 hours???