45 g Thirty grams of lead oxide and fifteen grams of ammonia react completely to produce solid lead, nitrogen gas, and liquid water.
24.6 ℃
<h3>Explanation</h3>
Hydrochloric acid and sodium hydroxide reacts by the following equation:

which is equivalent to

The question states that the second equation has an enthalpy, or "heat", of neutralization of
. Thus the combination of every mole of hydrogen ions and hydroxide ions in solution would produce
or
of energy.
500 milliliter of a 0.50 mol per liter "M" solution contains 0.25 moles of the solute. There are thus 0.25 moles of hydrogen ions and hydroxide ions in the two 0.500 milliliter solutions, respectively. They would combine to release
of energy.
Both the solution and the calorimeter absorb energy released in this neutralization reaction. Their temperature change is dependent on the heat capacity <em>C</em> of the two objects, combined.
The question has given the heat capacity of the calorimeter directly.
The heat capacity (the one without mass in the unit) of water is to be calculated from its mass and <em>specific</em> heat.
The calorimeter contains 1.00 liters or
of the 1.0 gram per milliliter solution. Accordingly, it would have a mass of
.
The solution has a specific heat of
. The solution thus have a heat capacity of
. Note that one degree Kelvins K is equivalent to one degree celsius ℃ in temperature change measurements.
The calorimeter-solution system thus has a heat capacity of
, meaning that its temperature would rise by 1 degree celsius on the absorption of 4.634 × 10³ joules of energy.
are available from the reaction. Thus, the temperature of the system shall have risen by 3.03 degrees celsius to 24.6 degrees celsius by the end of the reaction.
Answer: b and d
Explanation:
1×10^-3=1×1/10³=1×1/1000=1/1000 so b is correct
1×10^-3=1/1000=0.001
so d is correct
Answer:
Approximately
(approximately
.)
Explanation:
Calculate the quantity
of lithium phosphate in
of this
lithium phosphate solution.
.
Empirical formula of lithium phosphate:
.
Look up the relative atomic mass of
,
,and
on a modern periodic table:
Calculate the formula mass of
:
.
Calculate the mass of that
of
formula units:
.