Answer:
40%
Explanation:
Calculate the percent of the mass that is carbon:

Answer:
At the equivalence point, equal amounts of H+ and OH– ions will combine to form H2O, resulting in a pH of 7.0 (neutral). The pH at the equivalence point for this titration will always be 7.0, note that this is true only for titrations of strong acid with strong base.
Explanation:
Answer:
The concentration of this sodiumhydroxide solutions is 0.50 M
Explanation:
Step 1: Data given
Mass of sodium hydroxide (NaOh) = 8.0 grams
Molar mass of sodium hydroxide = 40.0 g/mol
Volume water = 400 mL = 0.400 L
Step 2: Calculate moles NaOH
Moles NaOH = mass NaOH / molar mass NaOH
Moles NaOH = 8.0 grams / 40.0 g/mol
Moles NaOh = 0.20 moles
Step 3: Calculate concentration of the solution
Concentration solution = moles NaOH / volume water
Concentration solution = 0.20 moles / 0.400 L
Concentration solution = 0.50 M
The concentration of this sodiumhydroxide solutions is 0.50 M
Answer:
CH₃CO₂H + H₂O ⇄ CH₃CO₂⁻ + H₃O⁺
Explanation:
A buffer is defined as the mixture of a weak acid and its conjugate base or vice versa.
For the acetic acid buffer, CH₃CO₂H is the weak acid and its conjugate base is the ion without H⁺, that is CH₃CO₂⁻. The equilibrium equation in water knowing this is:
<h3>CH₃CO₂H + H₂O ⇄ CH₃CO₂⁻ + H₃O⁺</h3>
<em>In the equilibrium, the acid is dissociated in the conjugate base and the hydronium ion.</em>
Tarnish is Ag2S-silver sulfide and the oxidation state of silver is +1