Mass of Co(NO₃)₂ = 1.95 g
V KOH = 0.350 L
[KOH] = 0.220 M
Kf = 5.0 x 10⁹
molar mass of Co(NO₃)₂ = 182.943 g/mol
so [Co(NO₃)₂] = 1.95 / (0.350 * 182.943) = 0.03045 M
[Co²⁺] = 0.03045 M
[OH⁻] = 0.22 M
chemical reaction:
Co²⁺(aq) + 4 OH⁻ ⇄ Co(OH)₄²⁻
I (M) 0.03045 0.22 0
C (M) - 0.03045 - 4 (0.03045) 0.03045
E (M) - x 0.22 - 4(0.03045) 0.03045
= 0.0982
Kf = [Co(OH)₄²⁻] / [Co⁺²][OH⁻]⁴
5.0 x 10⁹ = (0.03045) / x (0.0982)⁴
x = 6.5489 x 10⁻⁸
at equilibrium:
[Co²⁺] = 6.54 x 10⁻⁸
[OH⁻] = 0.0982 M
[Co(OH)₄²⁻] = 0.03045 M
Answer:
Alkali metal hydroxides can be used to test the identity of metals in certain salts. The colour of the precipitate will help identify the metal : Calcium hydroxide is soluble; no precipitate is formed.
Answer:
The molar mass and molecular weight of Al(CH3CO2)3 is 204.1136.
Explanation:
Answer:
Molality = 8.57 m
Explanation:
Given data:
Molarity of solution = 5.73 M
density = 0.9327 g/mL
Molality of solution = ?
Solution:
Molality = moles of solute / kg of solvent.
Kg of solvent:
Mass of 1 L solution = density× volume
Mass of 1 L solution = 0.9327 g/mL × 1000 mL
Mass of 1 L solution = 932.7 g
Mass of solute:
Mass of 1 L = number of moles × molar mass
Mass = 5.73 mol × 46.068 g/mol
Mass = 263.97 g
Mass of solvent:
Mass of solvent = mass of solution - mass of solute
Mass of solvent = 932.7 g - 263.97 g
Mass of solvent = 668.73 g
In Kg = 668.73 /1000 = 0.6687 Kg
Molality:
Molality = number of moles of solute / mass of solvent in Kg
Molality = 5.73 mol / 0.6687 Kg
Molality = 8.57 m