Answer:
Infinity = Never ending
Explanation:
The universe could be infinite, both in terms of space and time, but there is currently no way to test whether it goes on forever or is just very big. The part of the universe we are able to observe is finite, measuring about 46 billion light years in diameter.
The set of natural numbers is an infinite set. This kind of infinity is, by definition, called countable infinity. All sets that can be put into a bijective relation to the natural numbers are said to have this kind of infinity. This is also expressed by saying that the cardinal number of the set is aleph-naught (ℵ0).
Hope this helps. Mark as brainliest!
Answer:
the ratio of Hank's mass to Harry's mass is 0.7937 or [ 0.7937 : 1
Explanation:
Given the data in the question;
Hank and Harry are two ice skaters, since both are on top of ice, we assume that friction is negligible.
We know that from Newton's Second Law;
Force = mass × Acceleration
F = ma
Since they hold on to opposite ends of the same rope. They have the same magnitude of force |F|, which is the same as the tension in the rope.
Now,
Mass
× Acceleration
= Mass
× Acceleration
so
Mass
/ Mass
= Acceleration
/ Acceleration
given that; magnitude of Hank's acceleration is 1.26 times greater than the magnitude of Harry's acceleration,
Mass
/ Mass
= 1 / 1.26
Mass
/ Mass
= 0.7937 or [ 0.7937 : 1 ]
Therefore, the ratio of Hank's mass to Harry's mass is 0.7937 or [ 0.7937 : 1 ]
The local charging of the comb is due to induction. The negative object's charge pushes electrons in the comb away from the side close to the charged object causing that part to be positively charged. Note that the comb's net charge is still zero provided it doesn't touch the object. When you move the comb away its electrons will redistribute.
<span>reflection, rotation, translation</span>
it is just a matter of integration and using initial conditions since in general dv/dt = a it implies v = integral a dt
v(t)_x = integral a_{x}(t) dt = alpha t^3/3 + c the integration constant c can be found out since we know v(t)_x at t =0 is v_{0x} so substitute this in the equation to get v(t)_x = alpha t^3 / 3 + v_{0x}
similarly v(t)_y = integral a_{y}(t) dt = integral beta - gamma t dt = beta t - gamma t^2 / 2 + c this constant c use at t = 0 v(t)_y = v_{0y} v(t)_y = beta t - gamma t^2 / 2 + v_{0y}
so the velocity vector as a function of time vec{v}(t) in terms of components as[ alpha t^3 / 3 + v_{0x} , beta t - gamma t^2 / 2 + v_{0y} ]
similarly you should integrate to find position vector since dr/dt = v r = integral of v dt
r(t)_x = alpha t^4 / 12 + + v_{0x}t + c let us assume the initial position vector is at origin so x and y initial position vector is zero and hence c = 0 in both cases
r(t)_y = beta t^2/2 - gamma t^3/6 + v_{0y} t + c here c = 0 since it is at 0 when t = 0 we assume
r(t)_vec = [ r(t)_x , r(t)_y ] = [ alpha t^4 / 12 + + v_{0x}t , beta t^2/2 - gamma t^3/6 + v_{0y} t ]