Answer:
The tension in the string connecting block 50 to block 51 is 50 N.
Explanation:
Given that,
Number of block = 100
Force = 100 N
let m be the mass of each block.
We need to calculate the net force acting on the 100th block
Using second law of newton



We need to calculate the tension in the string between blocks 99 and 100
Using formula of force


We need to calculate the total number of masses attached to the string
Using formula for mass


We need to calculate the tension in the string connecting block 50 to block 51
Using formula of tension

Put the value into the formula



Hence, The tension in the string connecting block 50 to block 51 is 50 N.
Answer:
Original speed of the mess kit = 4.43 m/s at 50.67° north of east.
Explanation:
Let north represent positive y axis and east represent positive x axis.
Here momentum is conserved.
Let the initial velocity be v.
Initial momentum = 4.4 x v = 4.4v
Velocity of 2.2 kg moving at 2.9 m/s, due north = 2.9 j m/s
Velocity of 2.2 kg moving at 6.8 m/s, 35° north of east = 6.9 ( cos 35i + sin35 j ) = 5.62 i + 3.96 j m/s
Final momentum = 2.2 x 2.9 j + 2.2 x (5.62 i + 3.96 j) = 12.364 i + 15.092 j kgm/s
We have
Initial momentum = Final momentum
4.4v = 12.364 i + 15.092 j
v =2.81 i + 3.43 j
Magnitude

Direction

50.67° north of east.
Original speed of the mess kit = 4.43 m/s at 50.67° north of east.
Answer:
Explanation:
Thus, total 4+4=8 C atoms are present per unit cell of diamond. Carbon has an electronic arrangement of 2,4. In diamond, each carbon shares electrons with four other carbon atoms - forming four single bonds.
Answer:
each resistor is 540 Ω
Explanation:
Let's assign the letter R to the resistance of the three resistors involved in this problem. So, to start with, the three resistors are placed in parallel, which results in an equivalent resistance
defined by the formula:

Therefore, R/3 is the equivalent resistance of the initial circuit.
In the second circuit, two of the resistors are in parallel, so they are equivalent to:

and when this is combined with the third resistor in series, the equivalent resistance (
) of this new circuit becomes the addition of the above calculated resistance plus the resistor R (because these are connected in series):

The problem states that the difference between the equivalent resistances in both circuits is given by:

so, we can replace our found values for the equivalent resistors (which are both in terms of R) and solve for R in this last equation:
