When the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².
<h3>
Frictional force between the block and the horizontal surface</h3>
The frictional force between the block and the horizontal surface is determined by applying Newton's law;
∑F = ma
F - Ff = ma
Ff = F - ma
Ff = 4 - 2(1.2)
Ff = 4 - 2.4
Ff = 1.6 N
When the applied force increases to 5 N, the magnitude of the block's acceleration is calculated as follows;
F - Ff = ma
5 - 1.6 = 2a
3.4 = 2a
a = 3.4/2
a = 1.7 m/s²
Thus, when the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².
Learn more about frictional force here: brainly.com/question/4618599
Answer:
0.66c
Explanation:
Use length contraction equation:
L = L₀ √(1 − (v²/c²))
where L is the contracted length,
L₀ is the length at 0 velocity,
v is the velocity,
and c is the speed of light.
900 = 1200 √(1 − (v²/c²))
3/4 = √(1 − (v²/c²))
9/16 = 1 − (v²/c²)
v²/c² = 7/16
v = ¼√7 c
v ≈ 0.66 c
Answer:
The formula comes from Lorentz force law which includes both the electric and magnetic field. If the electric field is zero, the force law for just the magnetic field is <u>F=q(ν×B</u>) . Here, F is force and is a vector because the force acts in a direction. q is the charge of the particle. v is velocity and is a vector because the particle is moving in some direction. B is the magnetic flux density.
We can derive an expression for the magnetic force on a current by taking a sum of the magnetic forces on individual charges. (The forces add because they are in the same direction.) The force on an individual charge moving at the drift velocity vd. Since the magnitude of B is constant at every line element of the loop (circle) and it dot product with the line element is B dl everywhere, therefore
∮B dl=μ0 I
B ∮dl=μ0 I
B 2πr=μ0 I
B=μ02πr Id=μ0/4π I dl×rr3
Since, r can be written as r=(rcosθ,rsinθ,z) and dl as dl=(dl,0,0) And now, if we take the cross product we would get
dl×r=−z dlj^+rsinθk^
and therefore the magnitude of dB is equal to
dB=μ0/4π I |dl×r|/r3=μ0/4π I z2+r2sin2θ−−−−−−−−−−√dl/r3
Thus, magnetic field is depending on r,θ,z.
Learn more about Force here-
brainly.com/question/2855467
#SPJ4
Answer:
Satellite D has a mass (kg) of 500 and the distance from Earth (km) is 320.
Explanation:
The universal law of gravitation states that the force between two objects in the universe is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.
We have to choose the satellite having greatest gravitational force with earth. In all options the distance from the earth is same i.e. 320 km. So, we have to select the satellite having maximum mass because the mass of the earth is constant.
Hence, the correct option is (D) " Satellite D has a mass (kg) of 500 and the distance from Earth (km) is 320 ".
Answer:
Time elapsed
Explanation:
Acceleration is a vector quantity. It is defined as:

where
v is the final velocity
u is the initial velocity
t is the time elapsed
Acceleration is measured in meters per second squared (m/s^2). It must be noticed that acceleration is a vector, so it also has a direction. In particular:
- when acceleration is negative, it means that the object is slowing down, so acceleration is in opposite direction to the velocity
- when acceleration is positive, it means that the object is speeding up, so acceleration is in the same direction as the velocity