(1,500 meters) x (1 sec / 330 meters) = (4 and 18/33) seconds
(4.55 sec, rounded)
Answer:
Mariner 10 in 1974 and 1975
Explanation:
Answer and Explanation:
This can be explained as in Rutherford's model of atom the electrons orbits the nucleus which means that they will travel around the nucleus with some velocity and hence radiate electromagnetic waves which results in the loss of energy due to which the electron keeps coming closer and eventually falls into the nucleus.
But Bohr came up with a better explanation as according to the Bohr's atomic model, electrons stay fixed in orbit with certain energy in different shells around the nucleus and can only jump from an energy level to another if that specific amount of energy is supplied to it.
This model is based on the quantization of energy thus giving an explanation why electrons do not fall into the nucleus of an atom.
Answer:
The answer to your question is a = -1.85 m/s² the acceleration is negative because it is coming to stop.
Explanation:
Data
vo = 25 m/s
t = 13.5 s
a= ?
vf = 0 m/s
Formula
vf = vo + at
solve for a
a = (vf - vo)/t
Substitution
a = (0 - 25) / 13.5
Simplification
a = -25/13.5
Result
a = -1.85 m/s²
Displacement is a vector quantity. So, you incorporate the vector calculations when you try to determine the resultant vector. This is the shortest path from the starting point to the endpoint. If they are moving on one axis only, you use sign conventions. For motions moving to the left, use the negative sign. If it's moving to the right, then use the positive sign. Now, it the object moves 2 km to the left, and 2 km also to the right, the displacement is zero.
Displacement = 2 km - 2km = 0
Generally, the equation is:
<span>Displacement = Distance of motion to the right - Distance of motion to the left</span>