Gravitational field exists in
the space surrounding a charged particle and exerts a force on other charged
particles. Gravitational waves are ripples of waves travelling outward from the
source. The more massive the orbit of two bodies, the more it emits
gravitational wave. And everything around it that is near within the wave
experiences a ‘pull’ toward the orbiting bodies.
I believe your answer should be C. Speed.
Answer:
5p
Explanation:
We are given that a tin has 50 electrons.
We have to find in which subshell electrons experience the lowest effective nuclear charge.
We know that the electron in outermost shell experience the lowest effective nuclear charge.
Electronic configuration is given by

Outer most sub-shell is 5p. Therefore, 5p subshell experience the lowest effective nuclear charge because the distance of 5p sub-shell is large from nucleus.
Answer: 5p
Answer:
a) v2=4147.72 m/s
b) stotal=5.53x10^6 m
Explanation:
a) the length from the center of the earth is equal to:
L1=1x10^6+((6.37/2)x10^6)=4.18x10^6 m
the velocity is 5.14 km/s=5.14x10^3 m/s
the farthest distance is equal to:
L2=2x10^6+((6.37/2)x10^6)=5.18x10^6 m
As the angular momentum is conserved, we have to:
I1=I2
m*L1*v1=m*L2*V2, where m is the mass of satelite
clearing v2:
v2=(L1*V1)/L2=(4.18x10^6*5.14x10^3)/5.18x10^6=4147.72 m/s
b) Using the Newton 3rd law:
vf^2=vi^2+2as
where:
a=g=9.8 m/s^2
vf=0
vi=5.14 km/s
s=?
Clearing s:
s=(vf^2-vi^2)/(2g)=((0-(5.14x10^3)^2)/(2*9.8)=1.35x10^6 m
the total distance is equal to:
stotal=s+L1=1.35x10^6+4.18x10^6=5.53x10^6 m