The answer is A.) Gravity
Answer:
Option A.
Explanation:
In quantum physics <u>there is a law to relate the position and the momentum of the particle</u>, it says that if we know with precision where is a quantum particle, we can not know the momentum of this particle, in other words, the velocity of the particle. So, when we measure the velocity of the particle we find the correct value of the particle, but we can not determine with accuracy where is the particle. This law is known as the Heisenberg's uncertainty principle and, its expressed as follows:
<em>where Δx: is the position's uncertainty, Δp: is the momentum's uncertainty and h: is the Planck constant.</em>
Therefore, the correct answer is A: measuring the velocity of a tiny particle with an electromagnet has no effect on the velocity of the particle. It only affects the determination of the particle's position.
I hope it helps you!
The answer is constant acceleration.
Answer:
C. The voltage drop across the resistor is 2.1V and nothing about the current through the resistor.
Explanation:
When connected in parallel, voltage across the resistances are the same. So if 2.1V was dropped across the LED then 2.1V was also dropped across the resistor. However, this tells us nothing about the current through the resistor. We can find the current across the resistor if we know the resistance of the resistor, but that's about it.
If it were a series connection, then the current would have been the same, but the voltage drop were another story.
Answer:
High speed optical communication technology
To be able to communicate from the space to the earth and from earth to space is one of the most essential features required during space exploration.
Explanation:
Space exploration involves going into the space, beyond the earth's atmosphere. Landing on other planets and studying their details, going into deeper space beyond the planets to discover new cosmic events or structures is all a part of space exploration.
The key to analyse the studies and observations is being able to communicate the data collected, photos taken etc to the launch centers or space centers on earth. The space centers on earth should also be able to communicate with the persons or the satellites in space.
This is made possible using the optical communication technology which involves the use of optical fibers, lasers etc, since high speeds are more efficient during communication