Answer:
Fy=107.2 N
Explanation:
Conceptual analysis
For a right triangle :
sinβ = y/h formula (1)
cosβ = x/h formula (2)
x: side adjacent to the β angle
y: opposite side of the β angle
h: hypotenuse
Known data
h = T = 153.8 N : rope tension
β= 44.2°with the horizontal (x)
Problem development
We apply the formula (1) to calculate Ty : vertical component of the rope force.
sin44.2° = Ty/153.8 N
Ty = (153.8 N ) *(sen44.2°)= 107.2 N directed down
for equilibrium system
Fy= Ty=107.2 N
Fy=107.2 N upward component of the force acting on the stake
Answer:
F1= 588 N
F2= 784 N
Explanation:
Please see the attached file.
It goes in the downward direction
Answer:
Δy = v₀t + (1/2)gt²
where g = 9.81 m/s if the body is moving downwards and g = -9.81 m/s if the body is moving upwards
Explanation:
The general kinematic equation for horizontal displacement is gives as:
Δx = v₀t + (1/2)at²
Where
Δx = change in the x direction
v₀ = initial velocity
t = time
a = acceleration
If the body is vertically instead of horizontally, Δx is changed to Δy
Δy = v₀t + (1/2)at²
For a vertical moving body, the acceleration it experiences is the gravitational accerelation of the earth 'g'
So the equation becomes:
Δy = v₀t + (1/2)gt²
where g = 9.81 m/s if the body is moving downwards and g = -9.81 m/s if the body is moving upwards
Explanation:
Buoyancy force is equal to the weight of the displaced fluid:
B = ρVg
where ρ is the density of the fluid,
V is the volume of the displaced fluid,
and g is the acceleration due to gravity.
The fluid is water, so ρ = 1000 kg/m³.
The volume displaced is that of a sphere with radius 2 m:
V = 4/3 π r³
V = 4/3 π (2 m)³
V ≈ 33.5 m³
The buoyancy force is therefore:
B = (1000 kg/m³) (33.5 m³) (9.8 m/s²)
B ≈ 328,400 N
Round as needed.