1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tigry1 [53]
2 years ago
12

What is the primary damage control telephone circuit for

Engineering
1 answer:
user100 [1]2 years ago
6 0

Answer:

hsyghcjqg9ug9duyssatayfjzurldh

You might be interested in
1 point
11Alexandr11 [23.1K]

I think the orange thing on the gun but i dont know what principle it is but i think its c

Explanation:

Whem you press the orange thing it starts to work

5 0
3 years ago
“In a trusting relationship, confidential information is kept confidential.” Explain what the limits to confidentiality are and
Sliva [168]
The limits are dangerous situation. Ex. Suicidal actions/thoughts, anything that may put yourself, the individual, or anyone else at risk.
7 0
3 years ago
Implement
kolbaska11 [484]

Answer:

#include <iostream>

using namespace std;

// Pixel structure

struct Pixel

{

unsigned int red;

unsigned int green;

unsigned int blue;

Pixel() {

red = 0;

green = 0;

blue = 0;

}

};

// function prototype

int energy(Pixel** image, int x, int y, int width, int height);

// main function

int main() {

// create array of pixel 3 by 4

Pixel** image = new Pixel*[3];

for (int i = 0; i < 3; i++) {

image[i] = new Pixel[4];

}

// initialize array

image[0][0].red = 255;

image[0][0].green = 101;

image[0][0].blue = 51;

image[1][0].red = 255;

image[1][0].green = 101;

image[1][0].blue = 153;

image[2][0].red = 255;

image[2][0].green = 101;

image[2][0].blue = 255;

image[0][1].red = 255;

image[0][1].green = 153;

image[0][1].blue = 51;

image[1][1].red = 255;

image[1][1].green = 153;

image[1][1].blue = 153;

image[2][1].red = 255;

image[2][1].green = 153;

image[2][1].blue = 255;

image[0][2].red = 255;

image[0][2].green = 203;

image[0][2].blue = 51;

image[1][2].red = 255;

image[1][2].green = 204;

image[1][2].blue = 153;

image[2][2].red = 255;

image[2][2].green = 205;

image[2][2].blue = 255;

image[0][3].red = 255;

image[0][3].green = 255;

image[0][3].blue = 51;

image[1][3].red = 255;

image[1][3].green = 255;

image[1][3].blue = 153;

image[2][3].red = 255;

image[2][3].green = 255;

image[2][3].blue = 255;

// create 3by4 array to store energy of each pixel

int energies[3][4];

// calculate energy for each pixel

for (int i = 0; i < 3; i++) {

for (int j = 0; j < 4; j++) {

energies[i][j] = energy(image, i, j, 3, 4);

}

}

// print energies of each pixel

for (int i = 0; i < 4; i++) {

for (int j = 0; j < 3; j++) {

// print by column

cout << energies[j][i] << " ";

}

cout << endl;

}

}

// function prototype

int energy(Pixel** image, int x, int y, int width, int height) {

// get adjacent pixels

Pixel left, right, up, down;

if (x > 0) {

left = image[x - 1][y];

if (x < width - 1) {

right = image[x + 1][y];

}

else {

right = image[0][y];

}

}

else {

left = image[width - 1][y];

if (x < width - 1) {

right = image[x + 1][y];

}

else {

right = image[0][y];

}

}

if (y > 0) {

up = image[x][y - 1];

if (y < height - 1) {

down = image[x][y + 1];

}

else {

down = image[x][0];

}

}

else {

up = image[x][height - 1];

if (y < height - 1) {

down = image[x][y + 1];

}

else {

down = image[x][0];

}

}

// calculate x-gradient and y-gradient

Pixel x_gradient;

Pixel y_gradient;

x_gradient.blue = right.blue - left.blue;

x_gradient.green = right.green - left.green;

x_gradient.red = right.red - left.red;

y_gradient.blue = down.blue - up.blue;

y_gradient.green = down.green - up.green;

y_gradient.red = down.red - up.red;

int x_value = x_gradient.blue * x_gradient.blue + x_gradient.green * x_gradient.green + x_gradient.red * x_gradient.red;

int y_value = y_gradient.blue * y_gradient.blue + y_gradient.green * y_gradient.green + y_gradient.red * y_gradient.red;

// return energy of pixel

return x_value + y_value;

}

Explanation:

Please see attachment for ouput

6 0
3 years ago
Explain the difference between the connection of a cumulative compound and a differential compound motor
Alexandra [31]

Answer:

Explanation:

A motor is a device that directs current in electrical energy form to mechanical energy, which is known as direct current (DC) motors.

DC motors are of three types: (a) The series motor, (b) The shunt motor, and (c) the compound motor. Our main focus here is the Compound motor, which is further sub-divided into:

i) The cumulative compound motors

ii) The differential compound motors

The difference between these two are:

Cumulative compound motors                  Differential compound motors

In cumulative compound motors,              In differential compound motors,

both the series and shunt windings          both series and shunt are

are connected in a way that,                     connected in a way that the

production of fluxes through them           production of fluxes via them

assist each other i.e. they aid each          always opposes each other i.e.

other in the production of magnetism      they oppose each other in the

                                                                    production of magnetism.

6 0
3 years ago
How to fix a twisty pets wing permanatley after it has snaped without super glue
kaheart [24]

Answer:

tape that sh|t together

8 0
3 years ago
Read 2 more answers
Other questions:
  • A sharpshooter can hit the target with a probability p=0.75. a) What is the probability that out of 10 shots she misses them all
    10·1 answer
  • A Carnot machine operates with 25% efficiency, whose heat rejection reservoir temperature is 300K. Determine the temperature at
    13·1 answer
  • Air (cp = 1.005 kJ/kg·°C) is to be preheated by hot exhaust gases in a cross-flow heat exchanger before it enters the furnace. A
    11·1 answer
  • Complete the following sentence.
    7·1 answer
  • Water and air quality are critical issues facing human society.<br><br><br> True<br><br> False
    14·1 answer
  • Liquid water at 300 kPa and 20°C is heated in a chamber by mixing it with superheated steam at 300 kPa and 300°C. Cold water ent
    7·1 answer
  • What are the two tools used to create an HTML code? Name one example of each tool.
    9·1 answer
  • Pls help :( I am a radio &amp; audio production student, what are two examples of a complex wave.
    13·1 answer
  • According to Gary Sirota, the proposed Bajagua wastewater treatment plant is a beneficial solution because __________.
    5·1 answer
  • As part of its commitment to sustainability, a company is looking for a way to track the source of purchased goods and how they
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!