Answer:
The one end of a hollow square bar whose side is (10+N/100) in wit
Explanation:
Answer:


Explanation:
Given that:
x(t) = 10 sin(10t) . sin (15t)
the objective is to find the power and the rms value of the following signal square.
Recall that:
sin (A + B) + sin(A - B) = 2 sin A.cos B
x(t) = 10 sin(15t) . cos (10t)
x(t) = 5(2 sin (15t). cos (10t))
x(t) = 5 × ( sin (15t + 10t) + sin (15t-10t)
x(t) = 5sin(25 t) + 5 sin (5t)
From the knowledge of sinusoidial signal Asin (ωt), Power can be expressed as:

For the number of sinosoidial signals;
Power can be expressed as:

As such,
For x(t), Power 



For the number of sinosoidial signals;

For x(t), the RMS value is as follows:





Answer:
The surface temperature of the ground is = 296.946K
Explanation:
Solution
Given
r₁= 0.05m
r₂= 0.08m
Tn =Ti = 77K
Ki = 0.0035 Wm-1K-1
Kg = 1 Wm-1K-1
Z= 2m
Now,
The outer type temperature (Skin temperature pipe)
Q = T₀ -T₁/ln (r2/r1)/2πKi = 2πKi T0 -T1/ln (r2/r1)
Thus,
10 w/m = 2π * 0.0035 = T0 -77/ln 0.08/0.05
⇒ T₀ -77 = 231.72
T₀= 290.72K
The shape factor between the cylinder and he ground
S = 2πL/ln 4z/D
where L = length of pipe
D = outer layer of pipe
S = 2π * 1/4 *2/ 2 * 0.08 = 1.606m
The heat gained in the pipe is = S * Kg * (Tg- T₀)
(10* 1) = 1.606 * 1* (Tg- 290.72)
Tg - 290.72 = 6.2266
Tg = 296.946K
Therefore the surface temperature to the ground is 296.946K
Answer:
The particles in gas do not have any particular arrangement and there are very, very weak forces between them. So, the particles in a gas can easily move around and fill the shape of the container they are in, meaning they have no fixed shape.