Answer:
a) 23.89 < -25.84 Ω
b) 31.38 < 25.84 A
c) 0.9323 leading
Explanation:
A) Calculate the load Impedance
current on load side = 0.75 p.u
power factor angle = 25.84
= 0.75 < 25.84°
attached below is the remaining part of the solution
<u>B) Find the input current on the primary side in real units </u>
load current in primary = 31.38 < 25.84 A
<u>C) find the input power factor </u>
power factor = 0.9323 leading
<em></em>
<em>attached below is the detailed solution </em>
Answer:
0.34
Explanation:
See the attached picture.
Answer:
(a) We are asked to compute the Brinell hardness for the given indentation. for HB, where P= 1000 kg, d= 2.3 mm, and D= 10 mm.
Thus, the Brinell hardness is computed as

![=2*1000hg/\pi (10mm)[10mm-\sqrt{(1000^2-(2.3mm)^2} ]](https://tex.z-dn.net/?f=%3D2%2A1000hg%2F%5Cpi%20%2810mm%29%5B10mm-%5Csqrt%7B%281000%5E2-%282.3mm%29%5E2%7D%20%5D)
(b) This part of the problem calls for us to determine the indentation diameter d which will yield a 270 HB when P= 500 kg.
![d=\sqrt{D^2-[D-\frac{2P}{(HB)\pi D} } ]^2\\=\sqrt{(10mm)^2-[10mm-\frac{2*500}{450( \pi10mm)} } ]^2](https://tex.z-dn.net/?f=d%3D%5Csqrt%7BD%5E2-%5BD-%5Cfrac%7B2P%7D%7B%28HB%29%5Cpi%20D%7D%20%7D%20%5D%5E2%5C%5C%3D%5Csqrt%7B%2810mm%29%5E2-%5B10mm-%5Cfrac%7B2%2A500%7D%7B450%28%20%5Cpi10mm%29%7D%20%7D%20%5D%5E2)
Answer:
the compound light microscope
Explanation:
The stereomicroscope is to study section to study the entire objects in three dimensions at low magnification. A Compound light microscope is used for small or thinly sliced objects under higher magnification than stereomicroscope.
Answer:
the application of scientific knowledge for practical purposes, especially in industry.
2. machinery and equipment developed from the application of scientific knowledge.
3. the branch of knowledge dealing with engineering or applied sciences.
Explanation: