Answer : The number of grams of solute in 500.0 mL of 0.189 M KOH is, 5.292 grams
Solution : Given,
Volume of solution = 500 ml
Molarity of KOH solution = 0.189 M
Molar mass of KOH = 56 g/mole
Formula used :

Now put all the given values in this formula, we get the mass of solute KOH.


Therefore, the number of grams of solute in 500.0 mL of 0.189 M KOH is, 5.292 grams
 
        
                    
             
        
        
        
Solution :
From the balanced chemical equation, we can say that 1 moles of KBr will produce 1 moles of KCl .
Moles of KBr in 102 g of potassium bromide.
n = 102/119.002
n = 0.86 mole.
So, number of miles of KCl produced are also 0.86 mole.
Mass of KCl produced :

Hence, this is the required solution.
 
        
             
        
        
        
Answer:
31.9 °C  
Explanation:
The formula for the heat q absorbed by an object is
q = mCΔT where ΔT = (T₂ - T₁)
Data:
 q = 12.35 cal
m = 19.75 g
 C = 0.125 cal°C⁻¹g⁻¹
T₂ = 37.0 °C
Calculations
(a) Calculate ΔT
q = mCΔT
12.35 cal = 19.25 g × 0.125 cal°C⁻¹g⁻¹ × ΔT
12.35 = 2.406ΔT °C⁻¹  
ΔT  = 12.35/(2.406 °C⁻¹) = 5.13 °C
(b) Calculate T₂
ΔT = T₂ - T₁
T₁ = T₂ - ΔT = 37.0 °C - 5.13 °C = 31.9 °C
The original temperature was 31.9 °C.
  
 
        
             
        
        
        
Answer:
3.7mL is the volume of the object
Explanation:
To convert the mass of any object to volume we must use density that is defined as the ratio between mass of the object and the space that is occupying. For an object that weighs 7.9g and the density is 2.28g/mL, the volume is:
7.9g * (1mL / 2.28mL) = 
<h3>3.7mL is the volume of the object</h3>