Answer:
.
Explanation
In HX , X is more electronegative than Y so HX will ionise more because of ionic bond between H and X . On the other hand H₂Y will be less polar as compared to HX so it will ionise to a lesser extent . Hence Ka will be more for HX . Ka represents the degree of ionisation of acid . Higher the ionisation , higher is the value of Ka . H₂Y which is less polar will ionise less and hence it will have lesser value of Ka .
Hence H₂Y will have value of 10⁻⁷ and HX will have value of ka equal to 10⁹ .
The law of conservation of mass states that mass is neither created nor destroyed. Since we have 2 g/mol of A and 3 g/mol of B then AB should be equal to the sum of their molar mass that is
2 g/mol + 3 g/mol = 5 g/mol AB
for the case of A2B3
A2 = 2 * 2 = 4 g/mol
B3 = 3 * 3 = 9 g/mol
therefore A2B3 = 13 g/mol
I'm assuming that C is carbon.

55.1259 g of C
Answer:
9.4 liter
Explanation:
1) Data:
V₁ = 10.0 L
T₁ = 25°C = 25 + 273.15 K = 298.15 K
P₁ = 98.7 Kpa
T₂ = 20°C = 20 + 273.15 K = 293.15 K
P₂ = 102.7 KPa
V₂ = ?
2) Formula:
Used combined law of gases:
PV / T = constant
P₁V₁ / T₁ = P₂V₂ / T₂
3) Solution:
Solve the equation for V₂:
V₂ = P₁V₁ T₂ / (P₂ T₁)
Substitute and compuite:
V₂ = P₁V₁ T₂ / (P₂ T₁)
V₂ = 98.7 KPa × 10.0 L × 293.15 K / (102.7 KPa × 298.15 K)
V₂ = 9.4 liter ← answer
You can learn more about gas law problems reading this other answer on
Explanation: