Answer:Osmotic pressure is the minimum amount of pressure a solution must exert in order to prevent from crossing a barrier by osmosis. Solute molecules have difficulty crossing semipermeable membranes, so the more solutes that are in a solution, the higher the osmotic pressure will be. Between 30% sucrose and 60% sucrose, 60% sucrose will have a greater osmotic pressure than 30% because it has a higher percentage of solutes. However, since sucrose has a higher potential to cross semipermeable membranes and is more absorbable than magnesium sulfate, magnesium sulfate would have a higher osmotic pressure than 60% sucrose even though 60% sucrose has higher molecules.
Explanation:
Answer: The expression for equilibrium constant is ![\frac{[NH_3]^2}{[H_2]^3[N_2]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BH_2%5D%5E3%5BN_2%5D%7D)
Explanation: Equilibrium constant is the expression which relates the concentration of products and reactants preset at equilibrium at constant temperature. It is represented as 
For a general reaction:

The equilibrium constant is written as:
![k_c=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=k_c%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
Chemical reaction for the formation of ammonia is:


Expression for
is:
![k_c=\frac{[NH_3]^2}{[H_2]^3[N_2]}](https://tex.z-dn.net/?f=k_c%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BH_2%5D%5E3%5BN_2%5D%7D)
![1.6\times 10^2=\frac{[NH_3]^2}{[H_2]^3[N_2]}](https://tex.z-dn.net/?f=1.6%5Ctimes%2010%5E2%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BH_2%5D%5E3%5BN_2%5D%7D)
Ca^2+ and I^-
Na+ and Co3^2-
Ga^3+ and ClO3
Cu^2+ and F-
NH4^- and PO4^3-
Fe2+ and (SO4)^2-
Mg2+ and NO3^-
NH4^+ and NO2^-
K^+ and (C2H3O2)^- {C2H3O2 is acetate}
Na^+ and Cr2O7^2-
Answer: The final temperature of nickel and water is
.
Explanation:
The given data is as follows.
Mass of water, m = 55.0 g,
Initial temp,
,
Final temp,
= ?,
Specific heat of water = 4.184
,
Now, we will calculate the heat energy as follows.
q = 
= 
Also,
mass of Ni, m = 15.0 g,
Initial temperature,
,
Final temperature,
= ?
Specific heat of nickel = 0.444 
Hence, we will calculate the heat energy as follows.
q = 
=
Therefore, heat energy lost by the alloy is equal to the heat energy gained by the water.

= -(
)
= 
Thus, we can conclude that the final temperature of nickel and water is
.