Answer : The concentration of silver ion is, 
Explanation :
Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.
The equilibrium expression for the reaction is determined by multiplying the concentrations of products and divided by the concentrations of the reactants and each concentration is raised to the power that is equal to the coefficient in the balanced reaction.
As we know that the concentrations of pure solids and liquids are constant that is they do not change. Thus, they are not included in the equilibrium expression.
The given equilibrium reaction is,

The expression of
will be,
![K_{eq}=[Ag^+]^2[S^{2-}]](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5BAg%5E%2B%5D%5E2%5BS%5E%7B2-%7D%5D)
![2.4\times 10^{-4}=(2.5\times 110^{-1})^2[S^{2-}]](https://tex.z-dn.net/?f=2.4%5Ctimes%2010%5E%7B-4%7D%3D%282.5%5Ctimes%20110%5E%7B-1%7D%29%5E2%5BS%5E%7B2-%7D%5D)
![[S^{2-}]=3.8\times 10^{-3}M](https://tex.z-dn.net/?f=%5BS%5E%7B2-%7D%5D%3D3.8%5Ctimes%2010%5E%7B-3%7DM)
Therefore, the concentration of silver ion is, 
Answer:
14 OH⁻(aq) + 2 Cr³⁺(aq) = Cr₂O₇²⁻(aq) + 7 H₂O(l) + 6 e⁻
Explanation:
In order to balance a half-reaction we use the ion-electron method.
Step 1: Write the half-reaction
Cr³⁺(aq) = Cr₂O₇²⁻(aq)
Step 2: Perform the mass balance, adding H₂O(l) and OH⁻(aq) where appropriate
14 OH⁻(aq) + 2 Cr³⁺(aq) = Cr₂O₇²⁻(aq) + 7 H₂O(l)
Step 3: Perform the electric balance, adding electrons where appropriate
14 OH⁻(aq) + 2 Cr³⁺(aq) = Cr₂O₇²⁻(aq) + 7 H₂O(l) + 6 e⁻
I think it is because it is directly about the north or south pole (I forget) so while all the other stars seem to rotate around because the Earth is rotating but the North Star is directly in the center. Don't take my word though.
Answer:
c. sublimation and melting
Hope it helps...
Have a great day : )