Answer:
speed of car = 95 km/h
speed of truck = 75 km/h
relative speed of car with respect to truck = 95 - 75 = 20 km/h
now we will convert it into m/s
now time to cross the truck will be given as
time = 19.8 s
so it will take 19.8 s to cross the truck
Explanation:
Nuclear decay formula is N(t)=N₀*2^-(t/T), where N(t) is the amount of nuclear material in some moment t, N₀ is the original amount of nuclear material, t is time and T is the half life of the material, in this case carbon 14. In our case N(t)=12.5% of N₀ or N(t)=0.125*N₀, T=5730 years and we need to solve for t:
0.125*N₀=N₀*2^-(t/T), N₀ cancels out and we get:
0.125=2^-(t/T),
ln(0.125)=ln(2^-(t/T))
ln(0.125)=-(t/T)*ln(2), we divide by ln(2),
ln(0.125)/ln(2)=-t/T, multiply by T,
{ln(0.125)/ln(2)}*T=-t, divide by (-1) and plug in T=5730 years,
{ln(0.125)/[-ln(2)]}*5730=t
t=3*5730=17190 years.
The bone is t= 17190 years old.
At 8:00 pm, the velocity of the storm is 55 mi northeast. Assuming that the direction is exactly northeast, the angle is 45°
At 11:00 pm, the velocity is 75 mi north. The angle is 90°
In vector form
55 ∠ 45°
and
75 ∠ 90°
The magnitude and direction of the average velocity is
(55 ∠ 45° + 75 ∠ 90° ) / 3
Answer
given,
length of the swing = 26.2 m
inclined at an angle = 28°
let, the initial height of the Tarzan be h
h = L (1 - cos θ)
a) initial velocity v₁ = 0 m/s
final velocity of Tarzan = v_f
law of conservation of energy
PE_i + KE_i = PE_f + KE_f






= 7.75 m/s
the speed tarzan at the bottom of the swing
v_f = 7.75 m/s
b)initial speed of the = 3 m/s






v_f= 11.29 m/s