Answer: A
Explanation:
heat always passes from a warmer object to a cooler object until all objects are the same temperature. Conduction is how heat travels between objects that are touching. Conduction travels fastest through solids, but liquids and gases can also conduct heat.
Mutualism! The tree provides a home and food for the ants, while the ants protect the tree :)
The organism that would have the most variation in the DNA of its offspring is the cat (Option C). Meiosis is a type of cell division that generates more genetic variability than asexual types of reproduction.
Meiosis is a type of reductional cell division by which a parental cell produces 4 daughter cells (gametes), each containing half of the genetic material.
Animals (e.g., cats) generate gametes by meiosis which fuse during fertilization to produce new offspring.
Both amoeba and bacteria reproduce by a type of asexual reproduction called binary fission. Moreover, yeasts also reproduce asexually by a process called budding and fission.
Both asexual and sexual types of reproduction generate genetic variability by the emergence of new mutations in daughter cells.
Meiosis generates much more genetic variability than asexual types of reproduction due to two different processes:
- Random assortment of chromosomes, which produces new allele combinations.
- Recombination, i.e., by the exchange of genetic material (DNA) between non-sister chromatids during Prophase I.
Learn more in:
brainly.com/question/7002092
Answer:
F2 is the limiting reactant
27.6 grams of NaF is produced.
Explanation:
Balance the equation first.
2Na+ F2 ---> 2NaF
To find the limiting reactant, solve for how much NaF can be produced with Na and F2
12.5g F2 x (1 mole F2/ 38.00 grams F2)x (2 mole NaF/ 1 mole F2)
=0.658 moles NaF
16.2g Na x (1 mole Na/ 22.99 grams Na)x (2 mole NaF/ 2 mole Na)
=0.705 moles NaF
Since F2 produced the least NaF, F2 is the limiting reactant.
Now, to find how much NaF there is, use the moles solved above with F2 as the limiting reactant.
0.658 moles NaF x (41.99 grams NaF/ 1 mole NaF)= 27.6 moles NaF
27.6 moles of NaF would be theoretically produced.