Answer:
Explanation:
When a camera shifts focus from a faraway object to a nearby object, the lens-to-film distance must increase. Likewise, when it shifts focus from a nearby object to a distant object, there must be an increase in the lens to film distance (that is, the image distance).
Therefore, if the picture of an object that is far away, the lens must move towards the film.
The focal length cannot be changed because it is fixed for a lens. Nevertheless, in order to focus on an object, the image distance can be changed.
Answer:
<h3>The answer is 5.4 kg</h3>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>5.4 kg</h3>
Hope this helps you
The concept required to solve this problem is the optical relationship that exists between the apparent depth and actual or actual depth. This is mathematically expressed under the equations.

Where,
Depth of glass
Refraction index of water
Refraction index of glass
Refraction index of air
Depth of water
I enclose a diagram for a better understanding of the problem, in this way we can determine that the apparent depth in the water of the logo would be subject to



Therefore the distance below the upper surface of the water that appears to be the logo is 4.041cm
I personally think the answer is B.
<span>"Non-
horizontal rock layers were tilted or folded after they were originally
deposited; this makes the law of superposition challenging to use."</span>
Hoped I helped!
Answer:
The Doppler shift may be helpful to determine the relative speed of an object by bouncing a wave (usually a radar wave) off the object and measuring the shift in the frequency of the wave.
Explanation:
Doppler shift helps to overcome a visual illusion block out irrelevant noises, locate sounds and see an object in very dim light by determining the relative speed of an object by bouncing a wave