Answer:
East of North
Explanation:
We have the following data:
Speed of the wind from East to West: 
Speed of the bee relative to the air: 
If we graph these speeds (which in fact are velocities because are vectors) in a vector diagram, we will have a right triangle in which the airspeed of the bee (its speed relative to te air) is the hypotense and the two sides of the triangle will be the <u>Speed of the wind from East to West</u> (in the horintal part) and the <u>speed due North relative to the ground</u> (in the vertical part).
Now, we need to find the direction the bee should fly directly to the flower (due North):


Clearing
:


Answer: Add an incline or grade to the road track.
Explanation:
Refer to the figure shown below.
When a vehicle travels on a level road in a circular path of radius r, a centrifugal force, F, tends to make the vehicle skid away from the center of the circular path.
The magnitude of the force is
F = mv²/r
where
m = mass of the vehicle
v = linear (tangential) velocity to the circular path.
The force that resists the skidding of the vehicle is provided by tractional frictional force at the tires, of magnitude
μN = μW = μmg
where
μ = dynamic coefficient of friction.
At high speeds, the frictional force will not overcome the centrifugal force, and the vehicle will skid.
When an incline of θ degrees is added to the road track, the frictional force is augmented by the component of the weight of the vehicle along the incline.
Therefore the force that opposes the centrifugal force becomes
μN + Wsinθ = W(sinθ + μ cosθ).
Answer: D. They are the coldest stars.
Explanation:
Answer:
a) The magnitude of the force is 968 N
b) For a constant speed of 30 m/s, the magnitude of the force is 1,037 N
Explanation:
<em>NOTE: The question b) will be changed in other to give a meaningful answer, because it is the same speed as the original (the gallons would be 1.9, as in the original).</em>
Information given:
d = 106 km = 106,000 m
v1 = 28 m/s
G = 1.9 gal
η = 0.3
Eff = 1.2 x 10^8 J/gal
a) We can express the energy used as the work done. This work has the following expression:

Then, we can derive the magnitude of the force as:

b) We will calculate the force for a speed of 30 m/s.
If the force is proportional to the speed, we have:
