Answer:
W_apparent = 93.1 kg
Explanation:
The apparent weight of a body is the weight due to the gravitational attraction minus the thrust due to the fluid where it will be found.
W_apparent = W - B
The push is given by the expression of Archimeas
B = ρ_fluide g V
ρ_al = m / V
m = ρ_al V
we substitute
W_apparent = ρ_al V g - ρ_fluide g V
W_apparent = g V (ρ_al - ρ_fluide)
we calculate
W_apparent = 980 50 (2.7 - 0.8)
W_apparent = 93100 g
W_apparent = 93.1 kg
Its b.functional paragraph because writers use this for interest presents and special effects
Refer to the diagram shown below.
Still-water speed = 9.5 m/s
River speed = 3.75 m/s down stream.
The velocity of the swimmer relative to the bank is the vector sum of his still-water speed and the speed of the river.
The velocity relative to the bank is
V = √(9.5² + 3.75²) = 10.21 m/s
The downstream angle is
θ = tan⁻¹ 3.75/9.5 = 21.5°
Answer: 10.2 m/s at 21.5° downstream.
Answer:it’s is part of the cell theory because they where studying cells and to see it you need a microscope
Explanation:basically in the answer area
Archimedes principle states
that
F1 / A1 = F2 / A2
F2 = (A2 / A1) * F1
Also, formula for the force is
F = mg. Formula for the area of the cylinder is A = πr^2, therefore we get
F2 = (πr2^2 / πr1^2) * mg
Since the diameter of the
cylinders are 2 cm and 24 cm, r1 = 12 and r2 = 1.
Substituting the values to the
derived equation, we get
F2 = (π 1^2 / π 12^2) * 2400 * 9.8
F2 = 163.3333 N
<span> </span>