<span><span>Number of Protons-19 </span><span>Number of Neutrons-20 </span><span>Number of Electrons-<span>19</span></span></span>
Isotopes of any given factor all incorporate the equal variety of protons, so they have the identical atomic wide variety (for example, the atomic wide variety of helium is usually 2). Isotopes of a given factor include exceptional numbers of neutrons, therefore, special isotopes have special mass numbers.
Answer:
H2CO3 = 2H+ + CO3-
Explanation:
It is simply what carbonic acid breaks down into when placed in water. Since carbonic acid is made up of H and CO3, these are the products.
Answer : The freezing point of the solution is, 260.503 K
Solution : Given,
Mass of methanol (solute) = 215 g
Mass of water (solvent) = 1000 g = 1 kg (1 kg = 1000 g)
Freezing depression constant = 
Formula used :

where,
= freezing point of water = 
= freezing point of solution
= freezing point constant
= mass of solute
= mass of solvent
= molar mass of solute
Now put all the given values in the above formula, we get

By rearranging the terms, we get the freezing point of solution.

Therefore, the freezing point of the solution is, 260.503 K
Answer:
1.070MKCl
Explanation:
So we know that the original formula is M= n/L (n being moles of solute, L being liters of solvent)
Since we do not have liters in this problem, we would need to convert milliliters to liters
<u>213 mL= 0.213 L</u>
We then see that we do not have moles, but we do have a mass, being <u>17.0 g.</u> we would need to convert these grams to moles, giving us <u>0.228 mol.</u>
Then, you would plug in <u>0.228 for your n</u>, and now you are ready to solve your original formula, plugging everything in.
M=n/L
M=0.228 mol/0.213L
M= 1.070MKCl
I know this was long, but I hope this helps (: