The atom becomes positively charged.
Hope this helps!
The reaction given is:
4Ga + P4 ---> 4GaP
The oxidation number of the reactants is zero, because they are pure elements.
The P in compounds may have oxidation states 3- or 5-. Gallium may only have oxidation state 3+.
Then, to be neutral in GaP the oxidation states are 3+ for Ga and 3- for P.
And the transference of electrons can be see in this oxidation - reduction equations:
Ga (0) - 3 e- ----> Ga (3+)
P (0) + 3e- ---> P (3-)
So, for one formula unit, 3 electrons have been transfered from each Ga atom to P atom to form one GaP unit.
Answer: 3 electrons.
Spectroscopy be used to distinguish between the following is the compound B has a peak at 3200 – 3500 cm⁻¹ in its IR spectrum.
<h3>What is spectroscopy?</h3>
Spectroscopy is the study of emission or absorption of light. It is used to study the structure of atoms and molecules.
The three types of spectroscopy are:
- atomic absorption spectroscopy (AAS)
- atomic emission spectroscopy (AES)
- atomic fluorescence spectroscopy (AFS)
Thus, the correct option is B, the compound B has a peak at 3200 – 3500 cm⁻¹ in its IR spectrum.
Learn more about spectroscopy
brainly.com/question/5402430
#SPJ1
Answer:
0.297 mol/L
Explanation:
<em>A chemist prepares a solution of potassium dichromate by measuring out 13.1 g of potassium dichromate into a 150 mL volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the chemist's potassium dichromate solution. Be sure your answer has the correct number of significant digits.</em>
<em />
Step 1: Calculate the moles corresponding to 13.1 g of potassium dichromate
The molar mass of potassium dichromate is 294.19 g/mol.
13.1 g × (1 mol/294.19 g) = 0.0445 mol
Step 2: Convert the volume of solution to L
We will use the relationship 1 L = 1000 mL.
150 mL × (1 L/1000 mL) = 0.150 L
Step 3: Calculate the concentration of the solution in mol/L
C = 0.0445 mol/0.150 L = 0.297 mol/L