Answer: 29.50 m
Explanation: In order to calculate the higher accelation to stop a train without moving the crates inside the wagon which is traveling at constat speed we have to use the second Newton law so that:
f=μ*N the friction force is equal to coefficient of static friction multiply the normal force (m*g).
f=m.a=μ*N= m*a= μ*m*g= m*a
then
a=μ*g=0.32*9.8m/s^2= 3.14 m/s^2
With this value we can determine the short distance to stop the train
as follows:
x= vo*t- (a/2)* t^2
Vf=0= vo-a*t then t=vo/a
Finally; x=vo*vo/a-a/2*(vo/a)^2=vo^2/2a= (49*1000/3600)^2/(2*3.14)=29.50 m
1,000 grams = 1 kilogram
20 grams = 0.02 kilogram
Kinetic energy = (1/2) (mass) x (speed)²
(1/2) (0.02) x (15)² =
(0.01) x (225) = 2.25 joules
Answer:C..net work done on the object.
Explanation:
Answer: N = Mgcos(theta)
Therefore, the Normal reaction force is equal to Mgcos(theta)
Explanation:
See attached for a sketch.
From the attachment.
.
N = normal reaction force on block
W = weight of the block
theta = angle of the inclined plane to the horizontal
From the sketch, we can see that
N is equal in magnitude but opposite direction to Wy
N = Wy
And
Wy = Wcos(theta)
Wx = Wsin(theta)
Then,
N = Wy = Wcos(theta)
But W = mass × acceleration due to gravity = mg
N = Mgcos(theta)
Therefore, the Normal reaction force is equal to Mgcos(theta)
Answer:
The wavelength of the visible line in the hydrogen spectrum is 434 nm.
Explanation:
It is given that, the wavelength of the visible line in the hydrogen spectrum that corresponds to n₂ = 5 in the Balmer equation.
For Balmer series, the wave number is given by :
R is the Rydberg's constant
For Balmer series, n₁ = 2. So,
or
So, the wavelength of the visible line in the hydrogen spectrum is 434 nm. Hence, this is the required solution.