The recoil velocity of cannon is (4) 5.0 m/s
Explanation:
We can find the recoil velocity from the law of conservation of momentum.
The recoil velocity is velocity of body 2 after release of body 1, i.e. velocity of cannon after release of clown.
Let v2 be cannon's velocity, v1 be clown's velocity given = 15 m/sec
m1 be clown's mass = 100kg and m2 be cannon's mass given = 500kg.
So recoil velocity of cannon v2 is given by,
v2 = -(m1÷m2)v1
v2 = -(100÷500)15
v2 = -5 m/s
where the minus sign refers to the direction of cannon's recoil velocity being opposite to that of clown.
Hence, option (4)5.0 m/s is the correct answer.
Answer:Due to change in direction
Explanation:
Given
Initially train has traveled a 100 km in North and after exchanging some railroad cars, it traveled 100 in south.
The velocity of the train changes as it direction of motion changes. Velocity is the vector quantity which require direction and magnitude for its reperesentation.
Longitude was. Determining longitude requires knowing the exact time of day, which was difficult prior to modern clocks. The source book below tells the story of Englishman John Harrison's life-long pursuit of building a reliable clock and its importance to navigation.
In order to calculate the weight, we may simply use:
W = mg
W = 30 * 9.81
W = 294.3 N
The sum of the reaction force and the upward component of child pulling will be equal to total downward force. The force acting downwards is the weight. Therefore:
R + 12sin(45) = 294.3
R = 285.82 N
The acceleration can be found using the resultant force and the mass of the sled. The resultant force is:
F(r) = pulling force + pushing force - friction
F(r) = 12cos(45) + 8 - 5
F(r) = 11.48 N
a = F/m
a = 11.48 / 30
a = 0.38 m/s²