1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Digiron [165]
3 years ago
11

A 535 kg roller coaster car began at rest at the top of a 93.0 m hill. Now it is at the top of the first loop-de-loop.

Physics
2 answers:
fomenos3 years ago
8 0

B) The car has both potential and kinetic energy, and it is moving at 24.6 m/s.

Explanation:

Since the track is frictionless, the total mechanical energy of the car is constant, and it is always sum of the kinetic energy (K) and potential energy (U):

E=K+U

At the beginning, when the car is at rest at the top of the hill, all its energy is just gravitational potential energy (because the velocity is zero, so the kinetic energy is zero), so the mechanical energy is:

E=U_0=mgh=(535 kg)(9.8 m/s^2)(93.0 m)=487,599 J

At the top of the loop-de-loop, the car will have both potential energy (because it has a certain height above the ground) and kinetic energy (because it has some speed), but the total will still be the same:

E=U+K=487,599 J

We can calculate the potential energy at this point:

U=mgh=(535 kg)(9.8 m/s^2)(62.0 m)=325,066 J

So, the kinetic energy must be

K=E-U=487,599 J-325,066 J=162,533 J

And since the kinetic energy is related to the speed v by:

K=\frac{1}{2}mv^2

we can find the speed of the car at the top of the loop-de-loop:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2\cdot 162,533 J}{535 kg}}=24.6 m/s

iVinArrow [24]3 years ago
4 0
Using g = 9.8 m/s2, the statement that best describes the roller coaster car when it is at the top of the loop-de-loop is that The car has both potential and kinetic energy, and it is moving at 24.6 m/s. The correct answer is <span>B) The car has both potential and kinetic energy, and it is moving at 24.6 m/s.</span>
You might be interested in
Please help answer question​
nika2105 [10]

Answer:

C = 1.01

Explanation:

Given that,

Mass, m = 75 kg

The terminal velocity of the mass, v_t=60\ m/s

Area of cross section, A=0.33\ m^2

We need to find the drag coefficient. At terminal velocity, the weight is balanced by the drag on the object. So,

R = W

or

\dfrac{1}{2}\rho CAv_t^2=mg

Where

\rho is the density of air = 1.225 kg/m³

C is drag coefficient

So,

C=\dfrac{2mg}{\rho Av_t^2}\\\\C=\dfrac{2\times 75\times 9.8}{1.225\times 0.33\times (60)^2}\\\\C=1.01

So, the drag coefficient is 1.01.

4 0
3 years ago
A 0.5 kg mass on a spring undergoes simple harmonic motion with a total mechanical energy of 12 J. If the oscillation amplitude
Darya [45]

Answer:

The frequency of the oscillation is 2.45 Hz.

Explanation:

Given;

mass of the spring, m = 0.5 kg

total mechanical energy of the spring, E = 12 J

Determine the spring constant, k as follows;

E = ¹/₂kA²

kA² = 2E

k = (2E) / (A²)

k = (2 x 12) / (0.45²)

k = 118.519 N/m

Determine the angular frequency, ω;

\omega = \sqrt{\frac{k}{m} } \\\\\omega =  \sqrt{\frac{118.519}{0.5} } \\\\\omega = 15.396 \ rad/s

Determine the frequency of the oscillation;

ω = 2πf

f = (ω) / (2π)

f = (15.396) / (2π)

f = 2.45 Hz

Therefore, the frequency of the oscillation is 2.45 Hz.

8 0
3 years ago
A physicist found that a force of 1.32 N was measured between two charged spheres. The distance between the spheres was 95 cm. C
labwork [276]

The electric force (and the gravitational force too) is inversely proportional
to the square of the distance between the objects involved.

In this question, the distance is increased by a factor of  (1.25/0.95) .

So the electric force will change by the factor of  (0.95/1.25)² .

The new force is

           (1.32 N) · (0.95/1.25)²  =  0.762... newton   (rounded)
5 0
3 years ago
Clothes stick together when you pull them out of the dryer because
dusya [7]
It is because of static electricity
5 0
3 years ago
If a 54 kg sprinter can accelerate from a standing start to a speed of 10 m/s in 3 s, what average power is generated?
lora16 [44]

Answer:

Power, P = 600 watts

Explanation:

It is given that,

Mass of sprinter, m = 54 kg

Speed, v = 10 m/s

Time taken, t = 3 s

We need to find the average power generated. The work done divided by time taken is called power generated by the sprinter i.e.

P=\dfrac{W}{t}

Work done is equal to the change in kinetic energy of the sprinter.

P=\dfrac{\dfrac{1}{2}mv^2}{t}

P=\dfrac{\dfrac{1}{2}\times 54\ kg\times (10\ m/s)^2}{3\ s}

P = 900 watts

So, the average power generated by the sprinter is 900 watts. Hence, this is the required solution.

3 0
3 years ago
Other questions:
  • The natural pH of rain water is?
    14·2 answers
  • A geologist is studying rock layers in an old river bed, and he finds a fossil of a fish and a horsetail rush in the same rock l
    8·2 answers
  • A person throws a baseball from height of 7 feet with an initial vertical velocity of 50 feet per second. Use the vertical motio
    8·2 answers
  • a microwave uses a 14 a of electricity if 120 v is run through it what is the resistance of the microwave
    15·1 answer
  • two womans are of the same weight. one wears sandals with pointed heels while the other wears sandals with flat sole s. which on
    9·1 answer
  • What velocity must a 1210 kg car have in order to have the same momentum as a pickup truck
    10·1 answer
  • Tony waits for the spring tide to bring the best surfing waves in his area. He knows that the moon affects the tides, so which m
    12·2 answers
  • How do you explain Newton’s third law
    13·2 answers
  • What part (or parts) of this system have kinetic energy?
    12·2 answers
  • a car travel the first 20km with a speed of 40km/h and the next 40km with a speed of 80km/h . find the average speed​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!