1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Digiron [165]
2 years ago
11

A 535 kg roller coaster car began at rest at the top of a 93.0 m hill. Now it is at the top of the first loop-de-loop.

Physics
2 answers:
fomenos2 years ago
8 0

B) The car has both potential and kinetic energy, and it is moving at 24.6 m/s.

Explanation:

Since the track is frictionless, the total mechanical energy of the car is constant, and it is always sum of the kinetic energy (K) and potential energy (U):

E=K+U

At the beginning, when the car is at rest at the top of the hill, all its energy is just gravitational potential energy (because the velocity is zero, so the kinetic energy is zero), so the mechanical energy is:

E=U_0=mgh=(535 kg)(9.8 m/s^2)(93.0 m)=487,599 J

At the top of the loop-de-loop, the car will have both potential energy (because it has a certain height above the ground) and kinetic energy (because it has some speed), but the total will still be the same:

E=U+K=487,599 J

We can calculate the potential energy at this point:

U=mgh=(535 kg)(9.8 m/s^2)(62.0 m)=325,066 J

So, the kinetic energy must be

K=E-U=487,599 J-325,066 J=162,533 J

And since the kinetic energy is related to the speed v by:

K=\frac{1}{2}mv^2

we can find the speed of the car at the top of the loop-de-loop:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2\cdot 162,533 J}{535 kg}}=24.6 m/s

iVinArrow [24]2 years ago
4 0
Using g = 9.8 m/s2, the statement that best describes the roller coaster car when it is at the top of the loop-de-loop is that The car has both potential and kinetic energy, and it is moving at 24.6 m/s. The correct answer is <span>B) The car has both potential and kinetic energy, and it is moving at 24.6 m/s.</span>
You might be interested in
Which phase comes after waxing crescent moon
12345 [234]

Answer:

new moon

Explanation:

6 0
3 years ago
a 1210 kg roller coaster car is moving 6.33 m/s. as it approaches the station, brakes slow it down to 2.38 m/s over a distance o
Stels [109]

Answer:

4960 N

Explanation:

First, find the acceleration.

Given:

v₀ = 6.33 m/s

v = 2.38 m/s

Δx = 4.20 m

Find: a

v² = v₀² + 2aΔx

(2.38 m/s)² = (6.33 m/s)² + 2a (4.20 m)

a = -4.10 m/s²

Next, find the force.

F = ma

F = (1210 kg) (-4.10 m/s²)

F = -4960 N

The magnitude of the force is 4960 N.

4 0
3 years ago
Read 2 more answers
A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the lens strength (a.k.a, lens p
Kipish [7]

Answer:

20.0 cm

Explanation:

Here is the complete question

The normal power for distant vision is 50.0 D. A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the power of her eyes. What is the closest object she can see clearly?

Solution

Now, the power of a lens, P = 1/f = 1/u + 1/v where f = focal length of lens, u = object distance from eye lens and v = image distance from eye lens.

Given that we require a 10 % increase in the power of the lens to accommodate the image she sees clearly, the new power P' = 50.0 D + 10/100 × 50 = 50.0 D + 5 D = 55.0 D.

Also, since the object is seen clearly, the distance from the eye lens to the retina equals the distance between the image and the eye lens. So, v = 2.00 cm = 0.02 m

Now, P' = 1/u + 1/v

1/u = P'- 1/v

1/u = 55.0 D - 1/0.02 m

1/u = 55.0 m⁻¹ - 1/0.02 m

1/u = 55.0 m⁻¹ - 50.0 m⁻¹

1/u = 5.0 m⁻¹

u = 1/5.0 m⁻¹

u = 0.2 m

u = 20 cm

So, at 55.0 dioptres, the closet object she can see is 20 cm from her eye.

8 0
2 years ago
Applying newton's version of kepler's third law (or the orbital velocity law) to the a star orbiting 40,000 light-years from the
Ugo [173]

Applying Newtons version of Kepler's third law or the orbital velocity law to the star orbiting 40000 light years from the center of the Milky Way Galaxy allows us to determine the mass of the Milky Way Galaxy that lies within 40000 light years in the galactic center.

<h3></h3><h3>What is orbital velocity law?</h3>

The orbital velocity law states that, the orbital velocity is directly proportional to the mass of the body for which it is being calculated and inversely proportional to the radius of the body. Earths orbital velocity near its surface is around 8km/sec if the air resistance is disregarded.

In space exploration, orbital velocity is a crucial topic. Space authorities heavily rely on it to comprehend how to launch satellites. It aids scientists in figuring out the velocities at which satellites must orbit a planet or other celestial body to prevent collapsing into it. The speed at which one body orbits the other body is known as the orbital velocity. The term "orbit" refers to an object's consistent circular motion around the Earth. The distance between the object and the earth's centre determines the orbit's velocity.

To know more about orbital velocity law, refer brainly.com/question/11353717

#SPJ4

5 0
1 year ago
Calculate 8 ∙ 10^-4 divided by 2 ∙ 10^2.
Digiron [165]
8 ∙ 10^-4 / 2 ∙ 10^2 = (8/2) ∙ ((10^-4)*(10^-2)) = <span>4 ∙ 10^-6</span>
7 0
3 years ago
Other questions:
  • Object A is moving due east, while object B is moving due north. They collide and stick together in a completely inelastic colli
    14·2 answers
  • A phase change is an example of a (option 1) Nuclear Change (option 2) Physical change (option 3) chemical change (option 4) cov
    9·2 answers
  • A car moves with an initial velocity of 19 m/s due north. (Part A) Find the velocity of the car after 5.6 s if its acceleration
    10·1 answer
  • A satellite completes one revolution of a planet in almost exactly one hour. At the end of one hour, the satellite has traveled
    15·2 answers
  • Using the standard convention "positive is up", what is the sign of the acceleration of a rock you throw up (a) as it is going u
    10·1 answer
  • Landslides and mudslides can result from both volcanoes and earthquakes.<br><br> true<br> false
    15·1 answer
  • What colors of light are absorbed when white light falls on a green object?
    11·2 answers
  • Plz help owo
    15·1 answer
  • Question 12 A wave has a wavelength of 7.96 m and travels at 30.67 m/s. What is the frequency of the wave?​
    14·1 answer
  • If it takes you 10 seconds to move a chair 5 meters across the floor, using a force of 2 Newtons, how much power did you put out
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!