Answer:
The correct answer is the third option: The kinetic energy of the water molecules decreases.
Explanation:
Temperature is, in depth, a statistical value; kind of an average of the particles movement in any physical system (such as a glass filled with water). Kinetic energy, for sure, is the energy resulting from movement (technically depending on mass and velocity of a system; in other words, the faster something moves, the greater its kinetic energy.
Since temperature is related to the total average random movement in a system, and so is the kinetic energy (related to movement through velocity), as the thermometer measures <u>less temperature</u>, that would mean that the particles (in this case: water particles) are <u>moving slowly</u>, so that: the slower something moves, the lower its kinetic energy.
<u>In summary:</u> temperature tells about how fast are moving and colliding the particles within a system, and since it is <em>directly proportional</em> to the amount of movement, it can be related (also <em>directly proportional</em>) to the kinectic energy.
Its B: reduce the amount of energy needed to do the work by putting the work onto something else
The answer is refracts parallel to the axis of the lens
Answer:
The the maximum force acting on the crate is 533.12 newtons.
Explanation:
It is given that,
Mass of the wooden crate, m = 136 kg
The coefficient of static friction, 
The coefficient of kinetic friction, 
We need to find the maximum force exerted horizontally on the crate without moving it. As the crate is not moving than the coefficient of static friction will act and the force is given by :


F = 533.12 N
So, the maximum force acting on the crate is 533.12 newtons. Hence, this is the required solution.