Answer:
Distance will be 49.34 m
Explanation:
We have given wavelength 
Diameter of the antenna d = 2.7 m
Range L = 7.8 km = 7800 m
We have to find the smallest distance hat two speedboats can be from each other and still be resolved as two separate objects D
We know that distance is given by 
So distance D will be 49.34 m
Well, the tension in the thread will probably quadruple, but the hanging body will continue to just hang there.
The question gives us no evidence that it is doing any oscillating, and there's no reason for it to start just because it suddenly got heavier.
Distance for which the bike is ridden = 30 km
Speed at which the bike is driven = 0.75 km/minute
Let us assume the number of minutes taken to travel the distance of 30 km = x
Now we already know the formula of speed can be written as
Speed = Distance traveled/ Time taken
0.75 = 30/x
0.75x = 30
x = 30/0.75
= 40 minutes
So the time taken for riding a distance of 30 km will be 40 minutes. I hope this procedure is simple enough for you to understand.
Answer:
The height at which the object is moved is 10 meters.
Explanation:
Given that,
Force acting on the object, W = F = 490 N
The gravitational potential energy, P = 4900 J
We need to find the height at which the object is moved. We know that the gravitational potential energy is possessed due to its position. It is given by :

So, the height at which the object is moved is 10 meters. Hence, this is the required solution.
When Jane is sliding down a slide, she is demonstrating translational motion.