Answer:
z = 0.8 (approx)
Explanation:
given,
Amplitude of 1 GHz incident wave in air = 20 V/m
Water has,
μr = 1
at 1 GHz, r = 80 and σ = 1 S/m.
depth of water when amplitude is down to 1 μV/m
Intrinsic impedance of air = 120 π Ω
Intrinsic impedance of water = 
Using equation to solve the problem

E(z) is the amplitude under water at z depth
E_o is the amplitude of wave on the surface of water
z is the depth under water



now ,


taking ln both side
21.07 x z = 16.81
z = 0.797
z = 0.8 (approx)
Answer:
Lenz's law, in electromagnetism, statement that an induced electric current flows in a direction such that the current opposes the change that induced it. This law was deduced in 1834 by the Russian physicist Heinrich Friedrich Emil Lenz (1804–65).
Answer:
The soda is being sucket out at a rate of 3.14 cubic inches/second.
Explanation:
R= 2in
S= π*R²= 12.56 inch²
rate= 0.25 in/sec
rate of soda sucked out= rate* S
rate of soda sucked out= 3.14 inch³/sec
Answer:
active solar heating systems use solar energy to heat a fluid either liquid or air and then transfer the solar heat directly to the interior space or to a storage system for later use. If the solar system cannot provide adequate space heating, an auxiliary or back-up system provides the additional heat.
hope this helps : )