32 kg m/s would be the kinetic energy.
Answer:
a) K = 2/3 π G m ρ R₁³ / R₂
, b) U = - G m M / r
Explanation:
The law of universal gravitation is
F = G m M / r²
Part A
Let's use Newton's second law
F = m a
The acceleration is centripetal
a = v² / R₂
G m M / R₂² = m v² / R₂
v² = G M / R₂
They give us the density of the planet
ρ = M / V
V = 4/3 π R₁³
M = ρ V
M = ρ 4/3 π R₁³
v² = 4/3 π G ρ R₁³ / R₂
K = ½ m v²
K = ½ m (4/3 π G ρ R₁³ / R₂)
K = 2/3 π G m ρ R₁³ / R₂
Part B
Potential energy and strength are related
F = - dU / dr
∫ dU = - ∫ F. dr
The force was directed towards the center and the vector r outwards therefore there is an angle of 180º between the two cos 180 = -1
U- U₀ = G m M ∫ dr / r²
U - U₀ = G m M (- r⁻¹)
We evaluate for
U - U₀ = -G m M (1 /
- 1 /
)
They indicate that for ri = ∞ U₀ = 0
U = - G m M / r
Answer:
<h3>The answer is 2625 N</h3>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 75 × 35
We have the final answer as
<h3>2625 N</h3>
Hope this helps you
Answer:
L = 1.15 m
Explanation:
The diffraction phenomenon is described by the equation
a sin θ = m λ
Where a is the width of the slit, λ the wavelength and m is an integer, the order of diffraction is left.
The diffraction measurements are made on a screen that is far from the slit, and the angles in the experiment are very small, let's use trigonometry
tan θ = y / L
tan θ = sint θ / cos θ≈ sin θ
We substitute in the first equation
a (y / L) = m λ
The first maximum occurs for m = 1
The distance is measured from the center point of maximum, which coincides with the center of the slit, in this case the distance is the total width of the central maximum, so the distance (y) measured from the center is
y = 1.15 / 2 = 0.575 cm
y = 0.575 10⁻² m
Let's clear the distance to the screen (L)
L = a y / λ
Let's calculate
L = 115 10⁻⁶ 0.575 10⁻² / 575 10⁻⁹
L = 1.15 m
Answer:
p waves travel faster than s waves and surface waves