"Fig is attacted with answer"
Answer:
a) d = 33.72 m
b)
= 26 m/s
c) β = 71.08°
Explanation:
a)
When an object is thrown into the air under the effect of the gravitational force, the movement of the projectile is observed. Then it can be considered as two separate motions, horizontal motion and vertical motion. Both motions are different, so that they can be handled independently.
Given data:
time = t = 4.00 s
Height = h = 20 m
Angle = θ = 60°
Horizontal distance = d = ?
Using 2nd equation of motion

-20 =
(4) + 0.5(-9.8)(4)²
(4) = 58.4
= 14.6 m/s
This is vertical component of velocity when the ball is on the roof. To calculate the Final velocity and horizontal component, we use
=
/ sinθ
= 14.6 / sin 60
= 16.86 m/s
=
cosθ
= 16.86 cos 60
= 8.43 m/s
To calculate the horizontal distance
d =
t
d = (8.43)(4)
d = 33.72 m
b)
We know the values of Landing angle, height of roof, time of flight. In part a, We calculate the landing velocity of the ball and also its horizontal and vertical component. As the ball followed the projectile path, and we know that in projectile motion the horizontal component of the velocity remain constant throughout his motion. So there is no acceleration along horizontal path.
So,
= 
but the vertical component of velocity vary with and there is an acceleration along vertical direction which is equal to gravitation acceleration g.
So,
g = (
-
) / t
9.8 = 14.6 -
) / 4
= 24.6 m/s
= 
= 
= 26 m/s
c)
cos β =
/ 
β = cos⁻¹ (8.43 / 26)
β = 71.08°
Answer:
It is<em> impossible</em> to construct a machine which produces the <em>work output greater than the work input.</em>
Let us consider the II law of thermodynamics.
According to Kelvin Plank's statement any engine/machine does not give hundred percent efficiency. And violating the PMM-II(Perpetual motion of machine II kind), Always some amount of energy transferred to the sink or surroundings.
Therefore
W(ouput) = Q₁-Q₂
There are many reasons to lower the work output, just for an example friction between the mating parts reduces the work output.
Answer:
(a) The self inductance, L = 21.95 mH
(b) The energy stored, E = 4.84 J
(c) the time, t = 0.154 s
Explanation:
(a) Self inductance is calculated as;

where;
N is the number of turns = 1000 loops
μ is the permeability of free space = 4π x 10⁻⁷ H/m
l is the length of the inductor, = 45 cm = 0.45 m
A is the area of the inductor (given diameter = 10 cm = 0.1 m)

(b) The energy stored in the inductor when 21 A current ;

(c) time it can be turned off if the induced emf cannot exceed 3.0 V;

Answer:
this measurement if feet is: 2.624672 ft
Explanation:
Notice that 80 cm can be expressed as 0.8 meters, and In order to convert from meters to feet, one needs to multiply the meter measurement times 3.28084. Therefore:
0.80 m can be written in feet as: 0.80 * 3.28084 feet = 2.624672 feet
Boiling points are raised by hydrogen bonds because they make different molecules desire to "attach" to one another, which requires more energy to do so. In water, for instance, the hydrogen proton is in a state that resembles ionization because the connections between oxygen and hydrogen, while covalent, are strongly polar. The oxygen also receives a partial negative charge. Therefore, hydrogen bonds are formed when the electro-positive H in one molecule is strongly electrostatically attracted to the electro-negative O in nearby molecules. Despite being weak links, they are powerful enough to significantly alter the liquid's characteristics.
Thanks!
>> ROR