The answer to life is how ever you make it...... you can do anything with life that you would like.................. But make your choices worth it......
If you increase the mass of an object and want to move an object a specific distance, then you need to do extra work than the earlier
<h3>What is work done?</h3>
The total amount of energy transferred when a force is applied to move an object through some distance
Work Done = Force * Displacement
For example, let us suppose a force of 10 N is used to displace an object by a displacement of 5 m then the work done on the object can be calculated by the above-mentioned formula
work done = 10 N ×5 m
=50 N m
Thus, when an object's mass is increased and it is desired to move it a certain distance, more work must be done than previously.
Learn more about work done from here
brainly.com/question/13662169
#SPJ1
Answer:b
Explanation:
Given
mass of heavy object is 4m
mass of lighter object is m
A person pushes each block with same force F
According to Work Energy theorem Change in kinetic energy of object is equal to Work done by all the object
As launching velocity is same for both the object so heavier mass must possess greater kinetic energy . For same force heavier mass must be pushed 4 times farther than the light block .


So the correct option is b
Answer:
y = 128.0 km
Explanation:
The minimum separation of two objects is determined by Rayleygh's diffraction criterion, which establishes that two bodies are solved if the first minino of diffraction of one coincides with the central maximum of the second, with this criterion the diffraction equation remains
the diffraction equation for the first minimum is
a sin θ = λ
In the case of circular openings, the equation must be solved in polar coordinates, leaving the expression, we use the approximation that the sine of tea is very small.
θ = 1.22 λ / d
d = 15 cm
to find the distance we can use trigonometry
tan θ = y / L
tan θ = sin θ / cos θ = θ
substituting
y / L = λ / d
y = L λ /d
let's calculate
y = 384 10⁸ 500 10⁻⁹ / 0.15
y = 1.28 10⁵ m
Let's reduce to km
y = 1.28 10⁵ m (1km / 10³ m)
y = 128.0 km
the correct answer is 120 km away
If<span> a neutral </span>object loses<span> some </span>electrons<span>, </span>then<span> it will possess more protons</span>