Force required is 100 N
<u>Given that;</u>
Rate of acceleration = 5 m/s²
Mass of object = 20kg
<u>Find:</u>
Force required
<u>Computation:</u>
Force = Mass × Acceleration
Force required = Rate of acceleration × Mass of object
Force required = 20 × 5
Force required = 100 N
Learn more:
brainly.com/question/17506203?referrer=searchResults
Answer:
The instantaneous speed of the object after the first five seconds is 12.5 m/s.
(C) is correct option.
Explanation:
Given that,
An object starts at rest. Its acceleration over 30 seconds.
We need to calculate the instantaneous speed of the object after the first five seconds
We know that,
Area under the acceleration -time graph gives speed.
According to figure,
Hence, The instantaneous speed of the object after the first five seconds is 12.5 m/s.
This problem is a piece o' cake, IF you know the formulas for both kinetic energy and momentum. So here they are:
Kinetic energy = (1/2) · (mass) · (speed²)
Momentum = (mass) · (speed)
So, now ... We know that
==> mass = 15 kg, and
==> kinetic energy = 30 Joules
Take those pieces of info and pluggum into the formula for kinetic energy:
Kinetic energy = (1/2) · (mass) · (speed²)
30 Joules = (1/2) · (15 kg) · (speed²)
60 Joules = (15 kg) · (speed²)
4 m²/s² = speed²
Speed = 2 m/s
THAT's all you need ! Now you can find momentum:
Momentum = (mass) · (speed)
Momentum = (15 kg) · (2 m/s)
<em>Momentum = 30 kg·m/s</em>
<em>(Notice that in this problem, although their units are different, the magnitude of the KE is equal to the magnitude of the momentum. When I saw this, I wondered whether that's always true. So I did a little more work, and I found out that it isn't ... it's a coincidence that's true for this problem and some others, but it's usually not true.)</em>
Answer:
2m/s²
Explanation:
velocity = displacement (distance in a specified direction /time