The toy rocket is launched vertically from ground level, at time t = 0.00 s. The rocket engine provides constant upward acceleration during the burn phase. At the instant of engine burnout, the rocket has risen to 72 m and acquired a velocity of 30 m/s. The rocket continues to rise in unpowered flight, reaches maximum height, and falls back to the ground with negligible air resistance.
The total energy of the rocket, which is a sum of its kinetic energy and potential energy, is constant.
At a height of 72 m with the rocket moving at 30 m/s, the total energy is m*9.8*72 + (1/2)*m*30^2 where m is the mass of the rocket.
At ground level, the total energy is 0*m*9.8 + (1/2)*m*v^2.
Equating the two gives: m*9.8*72 + (1/2)*m*30^2 = 0*m*9.8 + (1/2)*m*v^2
=> 9.8*72 + (1/2)*30^2 = (1/2)*v^2
=> v^2 = 11556/5
=> v = 48.07
<span>The velocity of the rocket when it impacts the ground is 48.07 m/s</span>
Answer:
PRECAUTIONS
-The refracting faces of the glass prism should be smooth, transparent and without any air bubble or broken edge. ...
-Use a sharp pencil to draw boundary of the prism and rays of light.
-The alpins should have sharp tip and should be fixed exactly vertical to the plane of the paper.
Explanation:
Please give thanks to all my answers and please mark as brilliant and please follow me
Answer:
B and D
Explanation
Gravitational potential energy does not relate to graphs and it is about a moving object so b and d would not be correct