1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jekas [21]
3 years ago
11

For all simple machines, when the output force is greater than the input force,

Physics
1 answer:
KengaRu [80]3 years ago
7 0
For all simple machines, when the output force is greater than the input force, <span>the input force is exerted over a larger distance than the output force.

In short, Your Answer would be Option D

Hope this helps!</span>
You might be interested in
Acar accelerates from 4 meters/second to 16 meters/second in 4 seconds. The car's acceleration is
s2008m [1.1K]

To understand this question, you need to understand the concept of acceleration first. Have you ever been in a car and noticed that it was getting faster and faster? That "speeding up" of the car is known as acceleration! Acceleration is essentially the rate at which you speed up.

Okay, so we now know what acceleration is. What are its units? The unit of acceleration is the change in velocity over a period of time: \frac{∆v}{t}

If you haven't learned about velocity yet, just think about it as speed for now. The funny-looking triangle, ∆, is a symbol for "the change of." For example, if I started walking at 3 \frac{feet}{second} then sped up to 5 \frac{feet}{second}, then the change in my speed would be 2 \frac{feet}{second}, because I started walking 2 \frac{feet}{second} faster!

Okay, enough with all the explanations. Hopefully, you understand the units now. Let's take a look at the question. A car accelerates from 4 \frac{meters}{second} to 16 \frac{meters}{second}  in 4 seconds. What would the acceleration be? Let's set up an equation:

a = \frac{∆v}{t}

a is the acceleration, ∆v is the change in velocity, and t is the time elapsed.

Now, let's plug in our values! ∆v is the change in velocity, and to find that we simply have to subtract 16 \frac{meters}{second} by 4 \frac{meters}{second}. That makes sense, right? Back to the equation.

a = \frac{∆v}{t}
a = \frac{16-4}{4}

(16 - 4 is the change in velocity, and 4 is the number of seconds the car was accelerating)

a = \frac{12}{4}

a = 3 (\frac{meters}{second^{2}})

We have our answer! The car's acceleration is 3 meters per second^{2}.

(You might be thinking: Wait. Meters per second squared? The reason for that is because acceleration is the rate at which the speed increases! That makes the unit \frac{\frac{meters}{second}}{second}, which can be simplified down to \frac{meters}{second^{2} })

Let me know if you need clarification on anything I explained here!
- breezyツ

6 0
2 years ago
In a lab, a student drags a shoe across the floor at constant speed. If the coefficient of static friction between the floor and
Svetllana [295]
<span>B) 0.6 N
   I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem. The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So: 0.30 * 2N = 0.6N And if you look at your options, you'll see that option "B" matches exactly.</span>
7 0
3 years ago
Read 2 more answers
A woman holds a book by placing it between her hands such that she presses at right angles to the front and back covers. The boo
In-s [12.5K]

Answer:

Explanation:

In order to solve this problem we need to make a free body diagram of the book and the forces that interact on it. In the picture below you can see the free body diagram with these forces.

The person holding the book is compressing it with his hands, thus exerting a couple of forces of equal magnitude and opposite direction with value F.

Now the key to solving this problem is to analyze the equilibrium condition (Newton's third law) on the x & y axes.

To find the weight of the book we simply multiply the mass of the book by gravity.

W = m*g

W = 1.3[kg] * 9.81[m/s^2]

W = 12.75 [N]

7 0
3 years ago
A professor drives off with his car (mass 870 kg), but forgot to take his coffee mug (mass 0.47 kg) off the roof. The coefficien
SSSSS [86.1K]

Answer:6.86 m/s^2

Explanation:

Given

mas of car=870 kg

coffee mug mass=0.47 kg

coefficient of static friction between mug and roof \mu _s= 0.7

Coefficient of kinetic Friction \mu _k=0.5

maximum car acceleration is \mu \times g

here coefficient of static friction comes in to action because mug is placed over car . If mug is moving relative to car then \mu _k is come into effect

a_{max}=0.7\times 9.8=6.86 m/s^2

8 0
3 years ago
HELP HELP HELP ME PLEASE!!!!!!!!!!!!
adoni [48]
The air would contract therefore the answer is the second choice.
5 0
3 years ago
Other questions:
  • The graph below represents changes in water. What process is occurring during section “B” of the graph?
    10·1 answer
  • What does the phrase rise over run refer to when defining slope
    5·1 answer
  • Is it true or false that Science is a rigorous process, but is not subject to intense scrutiny by others
    12·1 answer
  • A rock is thrown horizontally from the top of a radio tower lands 17.0 m from the base of the tower. if the speed at which the o
    9·1 answer
  • A car is moving in the positive direction along a straight highway and accelerates at a constant rate while going from point A t
    6·1 answer
  • A slinky is traveling down the stairs, like in the video clip below. What is the total KINETIC ENERGY of the slinky at the botto
    15·1 answer
  • PLEASE ILL GIVE BRAINLIST Which term describes the high point of a transverse wave?
    13·1 answer
  • How do animals affect the amount of carbon earth’s atmosphere
    10·1 answer
  • If you were in a spaceship watching a ball hover at rest (inside the spaceship) in mid-air, and the spaceship suddenly began rap
    14·1 answer
  • A simple pendulum has time period of 2s. It is called second pendulum. Fimd the length of second pendulum on earth and moon(gm=g
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!