Earth's atmosphere is 78% nitrogen, 21% oxygen, 0.9% argon, and 0.03% carbon dioxide with very small percentages of other elements. Our atmosphere also contains water vapor. In addition, Earth's atmosphere contains traces of dust particles, pollen, plant grains and other solid particles.
Explanation:
Sodium has atomic number of 11 and its electronic configuration is given by:
![[Na]=1s^22s^22p^63s^1](https://tex.z-dn.net/?f=%5BNa%5D%3D1s%5E22s%5E22p%5E63s%5E1)
The nearest stable electronic configuration to sodium is of the neon. So, in order to attain stability of noble gas it will loose its single electron.

![[Na^+]=1s^22s^22p^63s^0](https://tex.z-dn.net/?f=%5BNa%5E%2B%5D%3D1s%5E22s%5E22p%5E63s%5E0)
Sodium has single valency that is 1.
Let nbe the valency of the ion 'X'
By criss-cross method, the oxidation state of the ions gets exchanged and they form the subscripts of the other ions. This results in the formation of a neutral compound.

So, the formulas for all the possible compounds that sodium can form with the other ions will be:

The question is incomplete, the complete question is;
In the 1800s, a popular belief known as vitalism stated that life processes could not be explained by the laws of physics and chemistry,and were instead dictated by an independent life force. Which discovery most likely caused scientists to revise this hypothesis regarding the origin of life on Earth?
a. that inorganic compounds existed within live organisms
b. that organic compounds could be synthesized in a laboratory
c. that RNA could serve as a template to synthesize DNA
d. that self-replicating molecules existed inside cells
Answer:
b. that organic compounds could be synthesized in a laboratory
Explanation:
Vitalism is the belief that "living organisms are fundamentally different from non-living entities because they contain some non-physical element or are governed by different principles than are inanimate things"(wikipedia).
This theory held that the molecules involved in life processes could not be synthesized in the laboratory.
All these were upturned after Fredrich Whöler's synthesis of urea in 1828. He was able to show that molecules involved in life process can also be synthesized in the laboratory. This gave rise to modern synthetic organic chemistry.