Answer: 1.8
Explanation:
You are given
the object distance U = 24.8 cm
Focal length F = 16.0 cm
First find the image distance by using the formula:
1/f = 1/u + 1/v
Where V = image distance
Substitute u and f into the formula
1/16 = 1/24.8 + 1/v
1/ v = 1/16 - 1/24.8
1/v = 0.0625 - 0.04032258
1/v = 0.022177
Reciprocate both sides by dividing both sides by one
V = 45.09 cm
Magnification M is the ratio of image distance to the object distance. That is,
M = V/U
Substitute V and U into the formula
M = 45.09/24.8
M = 1.818
Magnification of the image is therefore equal to 1.8 approximately
Voltage is the difference in charge between two points.
Current is the rate the charge flows
Resistance is the tendency a material has to resist the flow of charge (current)
Combining voltage resistance and current Ohm developed the formula
V (Voltage)= I (Current) x R (Resistance)
In a string of length L, the wavelength of the n-th harmonic of the standing wave produced in the string is given by:

The length of the string in this problem is L=3.5 m, therefore the wavelength of the 1st harmonic of the standing wave is:

The wavelength of the 2nd harmonic is:

The wavelength of the 4th harmonic is:

It is not possible to find any integer n such that
, therefore the correct options are A, B and D.
Answer:
The answer is D 100 newton
Explanation:
2.0m/s2 is d acceleration while the 50kg is the mass. Force = mass x acceleration. So f=50x2.so force is 100 newton
The power of the engine is 320 W.
<u>Explanation:</u>
Power may be defined as the rate of doing work (or) work done per unit time. One unit of energy is used to do the one unit of work.
Power = Work done / Time taken
Given, Force = 80 N, height = 5 m , final velocity = 4 m/s
To calculate the power, we must know the time taken.
To find the time, use the distance and speed formula which is given by
Time = Distance / speed
Here distance = 5 m and speed = 4 m/s
Time = 5 / 4 = 1.25 s.
Now, Power = work done / time
= (F * d) / t = (80 * 5) / 1.25
Power = 320 W.
The standard unit of power is watt (W) which is joule per second.