Answer : The number of molecules present in nitrogen gas are,
Explanation :
First we have to calculate the moles of nitrogen gas by using ideal gas equation.
where,
P = Pressure of
gas =
(1 atm = 760 mmHg)
V = Volume of
gas = 985 mL = 0.982 L (1 L = 1000 mL)
n = number of moles
= ?
R = Gas constant =
T = Temperature of
gas =
Now put all the given values in above equation, we get:

Now we have to calculate the number of molecules present in nitrogen gas.
As we know that 1 mole of substance contains
number of molecules.
As, 1 mole of
gas contains
number of molecules
So,
mole of
gas contains
number of molecules
Therefore, the number of molecules present in nitrogen gas are,
An ion-dipole force is a type of intermolecular force in which forces of attraction or repulsion occur between neighboring ions, molecules or atoms.
Answer:

Explanation:
<u>1. Energy to heat the liquid water from 55ºC to 100ºC</u>


<u>2. Energy to change the liquid to steam at 100ºC</u>

- n = 10.1g / 18.015g/mol = 0.5606mol

<u>3. Total energy</u>

Answer:

Explanation:
Hello there!
In this case, according to the given information, it will be possible for us to solve this problem by using the Boyle's law as an inversely proportional relationship between pressure and volume:

In such a way, we solve for the final volume, V2, and plug in the initial volume and pressure and final pressure to obtain:

Regards!
The concentration of a dextrose solution prepared by diluting 14 ml of a 1.0 M dextrose solution to 25 ml using a 25 ml volumetric flask is 0.56M.
Concentration is defined as the number of moles of a solute present in the specific volume of a solution.
According to the dilution law, the degree of ionization increases on a dilution and it is inversely proportional to the square root of concentration. The degree of dissociation of an acid is directly proportional to the square root of a volume.
M₁V₁=M₂V₂
Where, M₁=1.0M, V₁=14ml, M₂=?, V₂=25ml
Rearrange the formula for M₂
M₂=(M₁V₁/V₂)
Plug all the values in the formula
M₂=(1.0M×14 ml/25 ml)
M₂=14 M/25
M₂=0.56 M
Therefore, the concentration of a dextrose solution after the dilution is 0.56M.
To know more about dilution
brainly.com/question/18566203
#SPJ4