42.9°
Explanation:
Let's assume that the x-axis is aligned with the incline and the positive direction is up the incline. We can then apply Newton's 2nd law as follows:


Note that the net force is zero because the block is moving with a constant speed when the angle of the incline is set at
Solving for the angle, we get

or

![\;\;\;= \sin^{-1}\left[\dfrac{34\:\text{N}}{(5.1\:\text{kg})(9.8\:\text{m/s}^2)}\right]](https://tex.z-dn.net/?f=%5C%3B%5C%3B%5C%3B%3D%20%20%5Csin%5E%7B-1%7D%5Cleft%5B%5Cdfrac%7B34%5C%3A%5Ctext%7BN%7D%7D%7B%285.1%5C%3A%5Ctext%7Bkg%7D%29%289.8%5C%3A%5Ctext%7Bm%2Fs%7D%5E2%29%7D%5Cright%5D)

Answer:
≅50°
Explanation:
We have a bullet flying through the air with only gravity pulling it down, so let's use one of our kinematic equations:
Δx=V₀t+at²/2
And since we're using Δx, V₀ should really be the initial velocity in the x-direction. So:
Δx=(V₀cosθ)t+at²/2
Now luckily we are given everything we need to solve (or you found the info before posting here):
- Δx=760 m
- V₀=87 m/s
- t=13.6 s
- a=g=-9.8 m/s²; however, at 760 m, the acceleration of the bullet is 0 because it has already hit the ground at this point!
With that we can plug the values in to get:




(a) The horizontal and vertical components of the ball’s initial velocity is 37.8 m/s and 12.14 m/s respectively.
(b) The maximum height above the ground reached by the ball is 8.6 m.
(c) The distance off course the ball would be carried is 0.38 m.
(d) The ball's velocity after 2.0 seconds if there is no crosswind is 38.53 m/s.
<h3>
Horizontal and vertical components of the ball's velocity</h3>
Vx = Vcosθ
Vx = 39.7 x cos(17.8)
Vx = 37.8 m/s
Vy = Vsin(θ)
Vy = 39.7 x sin(17.8)
Vy = 12.14 m/s
<h3>Maximum height reached by the ball</h3>

Maximum height above ground = 7.51 + 1.09 = 8.6 m
<h3>Distance off course after 2 second </h3>
Upward speed of the ball after 2 seconds, V = V₀y - gt
Vy = 12.14 - (2x 9.8)
Vy = - 7.46 m/s
Horizontal velocity will be constant = 37.8 m/s
Resultant speed of the ball after 2 seconds = √(Vy² + Vx²)

<h3>Resultant speed of the ball and crosswind</h3>

<h3>Distance off course the ball would be carried</h3>
d = Δvt = (38.72 - 38.53) x 2
d = 0.38 m
The ball's velocity after 2.0 seconds if there is no crosswind is 38.53 m/s.
Learn more about projectiles here: brainly.com/question/11049671
Answer:
The factors that affect are depth of the fluid and its density
Most as long the hypothesis is a good answer and can be answered