Increasing the temperature increases reaction rates because of the disproportionately increase in the number of high energy collisions.
It's only these collisions (possessing at least the activation energy for the reaction)
which results in a reaction!
Answer:
A. 2.36 Newtons
Explanation:
F = GmM/d²
F = 6.673 x 10⁻¹¹(1)(5.98 x 10²⁴) / (1.3 x 10⁷)²
F = 2.36121...
Very poor question design.
mass of box... 1 significant digit
distance... 2 significant digits
mass of earth... 3 significant digits
value of G... 4 significant digits
Answer precision to 3 significant digits is not justifiable
Answer:
The definition of acceleration is a change in the rate of motion, speed or action.
<h2>hope it helps.</h2><h2>stay safe healthy and happy..</h2>
Answer:
Snow
Explanation:
Precipitation is the formation of a solid after being a liquid. Snow, which is a solid, forms from water, a liquid.
Hello!
This is an example of an inelastic collision, where the two objects "stick" to each other after their collision. (The Goalkeeper CATCHES the puck).
We can write out the conservation of momentum formula:
m1vi + m2vi = m1vf + m2vf
Let:
m1 = mass of puck
m2 = mass of the goalkeeper
We know that the initial velocity of the goalkeeper is 0, so:
m1vi + m2(0) = m1vf + m2vf
m1vi = m1vf + m2vf
The final velocities will be the same, so:
m1vi = (m1 + m2)vf
Plug in the given values:
(0.16)(40)/ (0.16 + 120) = vf ≈ 0.0533 m/s
Using the equation for momentum:
p = mv
The object with the LARGER mass will have the greater momentum. Thus, the Goalkeeper has the largest momentum as p = mv; a greater mass correlates to a greater momentum since the velocity is the same between the two objects. The puck would have a momentum of p = (.16)(0.0533) = 0.008528 kgm/s, whereas the goalkeeper would have a momentum of
p = (120)(0.0533) = 6.396 kgm/s.