The stretching force acting on the second wire, given the data is 588 N
<h3>Data obtained from the question</h3>
- Radius of fist wire (r₁) = 3.9×10⁻³ m
- Force of first wire (F₁) = 450 N
- Radius of second wire (r₂) = 5.1×10⁻³ m
- Force of second wire (F₂) =?
<h3>How to determine the force of the second wire</h3>
F₁ / r₁ = F₂ / r₂
450 / 3.9×10⁻³ = F₂ / 5.1×10⁻³
cross multiply
3.9×10⁻³ × F₂ = 450 × 5.1×10⁻³
Divide both side by 3.9×10⁻³
F₂ = (450 × 5.1×10⁻³) / 3.9×10⁻³
F₂ = 588 N
Learn more about spring constant:
brainly.com/question/9199238
#SPJ1
Answer:
Lower energy shell which will be nearer to the nucleus.
Explanation:
When electron move from one energy level to another, an electron must gain or lose just the right amount of energy.
When atoms releases energy, electrons move into lower energy levels. The electrons in the shells aways from the nucleus have more energy as compared to the electrons in the nearer shells.
Electrons with the lowest energy are found closest to the nucleus, where the attractive force of the positively charged nucleus is the greatest. Electrons that have higher energy are found further away
The suns gravity pulls on the planets and keeps them in place. Its gravitational pull puts them in orbit around the sun
Answer:
4.2 J
Explanation:
Specific heat capacity: This is defined as the amount of a heat required to rise a unit mass of a substance through a temperature of 1 K
From specific heat capacity,
Q = cmΔt.............................. Equation 1
Where Q = amount of energy absorbed or lost, c = specific heat capacity of water, m = mass of water, Δt = Temperature rise.
Given: m = 1 g = 0.001 kg, Δt = 1 °C
Constant : c = 4200 J/kg.°C
Substitute into equation 1
Q = 0.001×4200(1)
Q = 4.2 J.
Hence the energy absorbed or lost = 4.2 J