Answer:
An investigation is made to determine the performance of simple thin airfoils in the slightly supersonic flow region with the aid of the nonlinear transonic theory first developed by von Kármán[1]. Expressions for the pressure coefficient across an oblique shock and a Prandtl-Meyer expansion are developed in terms of a transonic similarity parameter. Aerodynamic coefficients are calculated in similarity form for the flat plate and asymmetric wedge airfoils, and curves are plotted. Sample curves for a flat plate and a specific asymmetric wedge are plotted on the usual coordinate grid of Cl, Cd,andCmc/4versus angle of attack and Cl versus Mach Number to illustrate the apparent features of nonlinear flow.
Explanation:
C. Rotations per second
Or normally we'd use Radians Per second
_Brainliest if helped!!
Answer:
Earth is nearest the Sun in July and farthest away in July.
Explanation:
Answer:
λ = 2.7608 x 10⁻⁷ m = 276.08 nm
Explanation:
The work function of a metallic surface is the minimum amount of photon energy required to release the photo-electrons from the surface of metal. The work function is given by the following formula:
Work Function = hc/λ
where,
Work Function = (4.5 eV)(1.6 x 10⁻¹⁹ J/1 eV) = 7.2 x 10⁻¹⁹ J
h = Plank's Constant = 6.626 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = longest wavelength capable of releasing electron.
Therefore,
7.2 x 10⁻¹⁹ J = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/λ
λ = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(7.2 x 10⁻¹⁹ J)
<u>λ = 2.7608 x 10⁻⁷ m = 276.08 nm</u>
Answer:20/47 meter per second
Explanation:
Mass of arrow(ma)=0.25kg
Velocity of arrow(va)=12m/s
Mass of target(mt)=6.8kg
Velocity of target(vt)=0 since target is at rest
Conservation of linear momentum says that :
maxva+mtxvt=(ma+mt)V
V=(maxva+mtxvt)/(ma+mt)
V=(0.25x12+6.8x0)/(0.25+6.8)
V=3/(7.05)
V=20/47 meter per second