1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dovator [93]
3 years ago
12

A dumbell has a mass of 95 kg. What force must be applied to accelerate it upward at 2.2 m/s2?

Physics
1 answer:
Sveta_85 [38]3 years ago
5 0
A :-) F = ma
Given - m = 95 kg
a = 2.2 m/s^2
Solution -
F = ma
F = 95 x 2.2
F = 209

.:. The force is 209 N
You might be interested in
What is the main difference between the following two velocities: 7 m/s and -7m/s?
Serjik [45]

The difference between the above velocities is that they exist in opposite direction of each other. or it can be said that they are negative vectors of each other.

7 0
2 years ago
An x-ray photon is scattered by an originally stationary electron. how does the frequency of the scattered photon compare relati
Viefleur [7K]

The frequency of the scattered photon decreases or it will be lower compare to the frequency of incident photon. An x-ray photon scatters in one direction after a collision and some energy is transferred to the electron as it recoils in another direction resulting to have less energy in the scattered photon. In addition, the frequencies will also depend on the differences of the angle at which the scattered photon leaves the collision and this incident is called Compton Effect.

8 0
3 years ago
An electromagnetic wave of wavelength
Ivanshal [37]

Answer:

4.01\cdot 10^{-7} m

Explanation:

When an electromagnetic wave passes through the interface between two mediums, it undergoes refraction, which means that it bents and its speed and its wavelength change.

In particular, the wavelength of an electromagnetic wave in a certain medium is related to the index of refraction of the medium by:

\lambda=\frac{\lambda_0}{n}

where

\lambda_0 is the wavelength in a vacuum (air is a good approximation of vacuum)

n is the refractive index of the medium

In this problem:

\lambda_0 = 5.89\cdot 10^{-7} m is the original wavelength of the wave

n = 1.47 is the index of refraction of corn oil

Therefore, the wavelength of the electromagnetic wave in corn oil is:

\lambda=\frac{5.89\cdot 10^{-7}}{1.47}=4.01\cdot 10^{-7} m

8 0
3 years ago
An unstable atomic nucleus has a mass of 17.010-27kg, and starts out at rest. When it decays, it the original nucleus disintegra
slega [8]

Answer:

Part a)

v = -(8.33\hat j + 9.33\hat i)\times 10^6 m/s

Part b)

E = 4.4 \times 10^{-13} J

Explanation:

As per momentum conservation we know that there is no external force on this system so initial and final momentum must be same

So we will have

m_1v_1 + m_2v_2 + m_3v_3 = 0

(5 \times 10^{-27})(6 \times 10^6\hat j) + (8.4 \times 10^{-27})(4 \times 10^6\hat i) + (3.6 \times 10^{-27}) v = 0

(30\hat j + 33.6\hat i)\times 10^6 + 3.6 v = 0

v = -(8.33\hat j + 9.33\hat i)\times 10^6 m/s

Part b)

By equation of kinetic energy we have

E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \frac{1}{2}m_3v_3^2

E = \frac{1}{2}(5 \times 10^{-27})(6\times 10^6)^2 + \frac{1}{2}(8.4 \times 10^{-27})(4 \times 10^6)^2 + \frac{1}{2}(3.6 \times 10^{-27})(8.33^2 + 9.33^2) \times 10^{12}

E = 9\times 10^{-14} + 6.72 \times 10^{-14} + 2.82\times 10^{-13}

E = 4.4 \times 10^{-13} J

8 0
3 years ago
A skater is using very low friction rollerblades. A friend throws a Frisbee at her, on the straight line along which she is coas
kupik [55]

Answer:

a)  perfectly inelastic,  b)  collision is inelastic,  c)   elastic  

Explanation:

In this exercise, it is asked to identify what type of shock occurs between the skater and the frisbee, for this we must define a system formed by the skater and the fribee, so that the forces during the crash have been internal and the amount of movement is preserved

Initial instant. Before the skater touches the frisbee

    p₀ = M v₁ + m v₂

where M and m are the masses of the skater and frisbee, respectively

for the final moment they give us several possibilities, in all case the moment is conserved

       p₀ = p_{f}

case a)

Final instant. grabs the frisbee and holds it

    p_{f} = (M + m) v '

     p₀ = p_{f}

We can see that this shock is perfectly inelastic, it holds the fressbee

case b)

final instant.

This case is similar to the previous one, but the final speed of fresbee is zero, therefore this collision is inelastic and the kinetic energy is not conserved.

case c)

final instant. Grab the fressbee and resend it

      p_{f} = M v_{1f} + m v_{2f}

this is an elastic Shock since the equivalent of a rebound of the fressbee, the kinetic energy is conserved.

5 0
3 years ago
Other questions:
  • What is the input of a person pulling a rope 20 meters with a force of 200 N
    12·1 answer
  • Which of the following is the correct SI unit to use in measuring the mass of a boulder
    5·2 answers
  • A disk of mass m and moment of inertia of I is spinning freely at 6.00 rad/s when a second identical disk, initially not spinnin
    11·1 answer
  • If the potential due to a point charge is 490 V at a distance of 10 m, what are the sign and magnitude of the charge?
    10·1 answer
  • A wooden block of mass M resting on a frictionless, horizontal surface is attached to a rigid rod of length ℓ and of negligible
    13·1 answer
  • Explain what the ionosphere is and how it interacts with some radio waves.
    13·1 answer
  • A ball resting on a roof 75 meters high has 1000 Joules of gravitational potential energy. Calculate the mass of the ball. (SHOW
    14·1 answer
  • A Man Moved first a Distance of 1000 m in 25 second and 2.5 km in 50 second along a in straight line?​
    12·1 answer
  • Sugar is considered a crystalline solid because
    11·1 answer
  • Electron can only lose energy by transition from one allowed orbit to another ______ electromagnetic radiation
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!